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An exact solution to the problem of free convective flow past a semi-infinite vertical plate with 
uniform heat and mass flux has been analyzed. The dimensionless governing equations are 
solved using Laplace-transform technique. The velocity, temperature and concentration fields 
are studied for different physical parameters. It was observed that the velocity increases with 
increasing values of thermal Grashof number or solutal Grashof number. It was also observed 
that the velocity decreases with increasing values of Prandtl number or the Schmidt number. 
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INTRODUCTION 
 
The effect of free convection flow of a viscous 
incompressible fluid past an infinite vertical plate has 
many important technological applications in the 
astrophysical, geophysical and engineering problems. 
Siegel (958) was the first to study the transient free 
convective flow past a semi-infinite vertical plate by 
integral method. The same problem was studied by 
Gebhart (1961) by an approximate method. 
Soundalgekar (1977) presented convection effects on 
the Stokes problem for infinite vertical plate 

The effect of heat transfer effects on unsteady free 
convective flow with uniform heat and mass flux is not 
studied in the literature. Therefore, it is proposed to 
study of heat transfer effects on unsteady free 
convective flow past a semi-infinite vertical plate in the 
presence of uniform heat and mass flux. The 
dimensionless governing equations are solved using 
the Laplace transform technique. 
 

 
Nomenclature 
 

C′ , species concentration in the fluid; 
p

c
, 

specific heat at 

constant pressure; D , mass diffusion coefficient; Gr , 

thermal Grashof number; Gc , solutal Grashof number; g
,
 

acceleration due to gravity; k , thermal conductivity; Pr , 

Prandtl number; Sc , Schmidt number; T ′ ,  temperature of 

the fluid near the plate; t′ , time; t , dimensionless time; u′ , 

velocity of the fluid in the x′ -direction; 0u , velocity of the 

plate; ,x y′ ′
, 

coordinates along and normal to the plate 

respectively; y
, 

dimensionless coordinate axis normal to the 

plate; q′ , constant heat flux at the plate; j′′ , mass flux per 

unit area. 
 
 
Greek symbols 
 

β , volumetric coefficient of thermal expansion; 
*β , 

volumetric coefficient of expansion with concentration; µ , 

coefficient of viscosity; ν , kinematic viscosity; ρ , density of 

the fluid; θ , dimensionless temperature; φ , dimensionless 

concentration; η
,
 similarity parameter; erfc , complementary 

error function 
 

 
Subscript 
 
∞ , free stream condition 

 
 
Mathematical analysis 
 
An unsteady flow of a viscous incompressible fluid past 
an impulsively started infinite vertical plate with heat  



 
 
 
 

and mass flux has been considered. The x′ - axis is 

taken along the plate in the vertical upward direction 

and y′ -axis is taken normal to the plate. Initially, the 

plate and fluid are at the same temperature and 

concentration. At time 0t′ > , the plate is given an 

impulsive motion in the vertical direction against the 

gravitational field with uniform velocity 0u , the plate 

temperature and concentration level raised at an 
uniform rate. Then under the usual Boussinesq’s 
approximation the unsteady flow is governed by the 
following equations: 
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With the following initial and boundary conditions: 
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On introducing the following non-dimensional quantities: 
2 2 * 2

0 0

4 4

0 0 0

4
0 0

, , , , ,

, Pr , ,
p

t u yuu g q g j
u t y Gr Gc

u ku Du

cT T C C
Sc

q jk D
ku Du

β ν β ν

ν ν

µ ν
θ φ

ν ν
∞ ∞

′′ ′ ′′
= = = = =

′ ′ ′ ′− −
= = = =

′ ′′

 
(5) 
 
In equations (1) to (4), we get 
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The initial and boundary conditions in non-dimensional 
quantities are: 

0, 0, 0u θ φ= = =  for all , 0y t ≤  
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0: 1, 1, 1 0t u at y
y y

θ φ∂ ∂
> = =− =− =

∂ ∂
   (9) 

           

0, 0, 0u as yθ φ→ → → → ∞   

All the physical variables are defined in the 
nomenclature. 
 
 
Method of solution 
 
The dimensionless governing equations (6)   to (8)   
subject to the boundary conditions (9), are solved by 
the usual Laplace transform technique. The solutions 
are derived as: 
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where 
2

y

t
η = , ( )erfc x being the complementary 

error function defined by  
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RESULTS AND DISCUSSION 
 
For physical interpretation of the problem, numerical 
computations are carried out for different physical 

parameters , , PrGr Gc and Sc  upon the nature of the 

flow and transport.  Here the value of Pr is chosen as 

0.71, which corresponds air. The values of Sc are 

chosen such that they represent water vapour (0.6) and 
Ammonia (0.78). In the present study we adopted the 
following default parameter 

values 2.0Gr = , 2.0Gc = , Pr 0.71= , 0.6Sc = ,

0.2t = . All graphs therefore correspond to these 

values unless specifically indicated on the appropriate 
graph.  
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Figure 1. Velocity profiles for different values of Gr  
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Figure 2. Velocity profiles for different values of Gc  

 
 

The velocity profiles for different values of Gr are 

studied and presented in Figure 1. The thermal Grashof 
number signifies the relative effect of the thermal 
buoyancy force to the viscous hydrodynamic force. The 
flow is accelerated due to the enhancement in 
buoyancy force corresponding to an increase in the 
thermal Grashof number i.e., free convection effects. 
The positive values of Gr correspond to cooling of the 
plate by natural convection. Heat is therefore conducted 
away from the vertical plate into the fluid which 
increases the temperature and thereby enhances the 
buoyancy force. In addition, it is seen that the peak 
values of the velocity increases rapidly near the plate as 
thermal Grashof number increases and then decays 
smoothly to the free stream velocity.  

Figure 2 presents typical velocity profiles in the 
boundary layer for various values of the solutal Grashof 

numberGc . The solutal Grashof number Gc defines 

the ratio of the species buoyancy force to the viscous 

hydrodynamic force.  The solutal Grashof number Gc  

defines the ratio of the species buoyancy force to the 
viscous hydrodynamic force. It is noticed that the 
velocity increases with increasing values of the solutal 
Grashof number. 

Figures 3 and 4 illustrate the velocity and temperature 
profiles for different values of Prandtl number Pr. The 
numerical results show that the effect of increasing 
values of Prandtl number results in a decreasing 
velocity. From Figure 4, it is observed that an increase 
in the Prandtl number results a decrease of the thermal 
boundary layer thickness and in general lower average 
temperature within the boundary layer. The reason is 
that smaller values of Pr are equivalent to increasing 
the thermal conductivities, and therefore heat is able to  
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Figure 3. Velocity profiles for different values of Pr  
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Figure 4. Temperature profiles for different values of Pr  
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Figure 5. Velocity profiles for different values of Sc  



056. J, Pet. Gas Explor. Res. 
 
 
 
 

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y

φ Sc = 0.3, 0.6, 0.78, 0.94

 
 

Figure 6. Concentration profiles for different values of Sc  

 
 
diffuse away from the heated surface more rapidly than 
for higher values of Pr. Hence in the case of smaller 
Prandtl numbers as the boundary layer is thicker and 
the rate of heat transfer is reduced. 

For different values of the Schmidt number Sc, the 
velocity and concentration profiles are plotted in Figures 
5 and 6 respectively. The Schmidt number Sc embodies 
the ratio of the momentum diffusivity to the mass 
(species) diffusivity. It physically relates the relative 
thickness of the hydrodynamic boundary layer and 
mass-transfer (concentration) boundary layer. As the 
Schmidt number increases the concentration 
decreases. This causes the concentration buoyancy 
effects to decrease yielding a reduction in the fluid  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
velocity. The reductions in the velocity and 
concentration profiles are accompanied by  
simultaneous reductions in the velocity and 
concentration boundary layers, which is evident from 
Figures 5 and 6. 
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