The Effects of Planning and Proficiency on Language Production of Writing Task Performance

*Roghayyeh Nariman-Jahan, Massoud Rahimpour

Tabriz University, University of Queensland

Accepted 07 September, 2011

Planning is an inseparable part of all spoken and written language use. That is, all speakers and writers need to decide what to say and write and how to do it. Therefore, there is a need to study about planning. Thus, the present study reports on an experiment in which two groups of 72 high and low EFL proficiency learners of English performed two monologic production tasks with and without time for planning. The first group with time for planning was required to plan for their performance for 10 minutes and take notes before they performed the tasks, whilst the participants in the second group (without time for planning) began writing immediately and take time as long as they like. The participants’ performances were then analyzed utilizing paired samples t-test. The results corroborated that low-proficiency learners appear to benefit more from time for planning with respect to concept load and fluency. On the other hand, high-proficiency learners were advantaged by planning without time concerning concept load, fluency, complexity, and accuracy. The findings of the study may have pedagogical implications for the fields of syllabus design, language teaching, language testing, and teacher training bodies.

Key words: Task, Planning, Proficiency, Concept Load, Fluency, Complexity, Accuracy, Writing Performance

INTRODUCTION

Over the last fifteen years, task planning has become a burgeoning area of research within task-based language learning. An accumulation of studies has converged to conclusion that providing adult language learners with the opportunity to plan before doing a task allows them to produce discourse of higher quality in the second language (Ortega, 2005). Indeed, these studies have investigated learners with a very limited range of proficiency. They have examined mainly intermediate learners and post-beginners (e.g. Ellis, 1987), intermediate learners (e.g. Ortega, 1995; cited in Ortega, 2005), pre-intermediate learners (e.g. Foster and Skehan, 1996; Skehan and Foster, 1997), and early intermediate learners (Mehnert, 1998). To the best of author’s knowledge, that is, Ellis (2005, 2009) the study by Wiggleworth (1998) is the only study that took proficiency into accounts. Thus, the present study focuses on proficiency to show the role of proficiency in any effect for planning.

Many studies have found that pre-task planning significantly facilitates fluency in L2 oral production (Crooks, 1989; Foster and Skehan, 1996; Mehnert, 1998; Ortega, 1999; Skehan and Foster (1999) Wiggleworth, 1997). Language complexity also increases for more proficient learners (Wiggleworth, 1997) and with more cognitively demanding tasks (Foster and Skehan, 1996). When it comes to accuracy, however, the effects of pre-task planning is less certain.

Although a number of studies have investigated the effects of pretask planning, only few studies have examined on-line planning (i.e. the planning that occurs during a speech event) (Ellis and Yuan, 2004). Also, in contrast to the number of studies that have investigated the effects of planning on oral narratives, there have been very few task-based studies of the effects of planning on written tasks. Thus, the present study reports on a study that was designed to shed light on the gaps in
the previous research. It has the following objectives: 1) to describe pre-task planning and on-line planning 2) to illustrate the theoretical background to the study of planning 3) to explain the effects of planning and proficiency on aspects of language production namely concept load, fluency, complexity, and accuracy on written personal tasks.

Types of Planning

Figure 1 above distinguishes two principal types of task-based planning- pre-task planning and within-task planning. These are distinguished simply in terms of when the planning takes place- either before the task is performed or during its performance (Ellis, 2005: 3-4).

While pre-task planning and within-task planning (on-line planning) constitute distinctive types of planning they should not be seen as mutually exclusive (Ellis, 2005). Pre-task planning is further divided into rehearsal and strategic planning. Rehearsal entails providing learners with an opportunity to perform the task before the ‘main performance’. In other words, it involves task repetition with the first performance of the task viewed as a preparation for subsequent performance. Strategic planning entails learners preparing to perform the task by considering the content they will need to encode and how to express this content. In pre-task planning, the learners have access to the actual task materials.

Within-task planning is defined as the kind of planning which occurs during performance. It consists mainly of process of conceptualization, lexico-grammatical searches, and monitoring, all at the level of particular utterances- that is, at the micro- rather than the macro-level (Bygate and Samuda, 2005).

In accordance with Ellis (2005) within-task planning can be differentiated according to the extent to which the task performance is pressured or unpressured. This can be achieved most easily by manipulating the time made available to the learners for the on-line planning of what to say/write in a task performance. Within-task planning refers to the planning that takes place on-line, during as opposed to before the performance of the task. Within-task can be ‘careful’ in the sense that the performers of the task have ample opportunity to plan their productions and make use of this opportunity to attend to the content and/or expression of their performance. Alternatively, it can be ‘pressured’ in the sense that performers are required to produce text rapidly and thus have limited opportunity to attend closely to content and/or expression as they perform the task (Ellis and Yuan, 2005). In an unpressured performance learners can engage in careful on-line planning. In pressured performance learners will need to engage in rapid planning.

Theoretical Background to the Study of Planning

Theoretical frameworks that have informed the study of task planning in second language acquisition (SLA) can be divided into three categories. These include 1) Tarone’s (1983) account of stylistic variation, 2) models of speech production and writing, 3) cognitive models of L2 performance and language learning.

Tarone’s Theory of Stylistic Variation

Tarone’s theory draws heavily on Labov’s account of stylistic variation in native speakers. Drawing on this theory of intra-speaker variability, Tarone (1983) proposed what she called the Capability Continuum for L2 learners. This consists of a continuum of styles, ranging from the ‘careful’ to the ‘vernacular’. Tarone proposed two ways in which new forms can enter interlanguage. In one way, forms originate in the learner’s
vernacular style and then spread to the more careful style over time. In other words, forms appear initially in learner’s most careful style, manifest only when the learner is paying close attention to speech production, and then spread to the less formal styles where they replace earlier, more cognitive forms.

Cognitive Models of L2 Performance and Learning

There are two conflicting theories regarding how mind works while performing a task. The first and widely accepted approach is Skehan’s (1998) cognitive approach which is based on a distinction between a rule-based system and exemplar-based system. In the former case, it is assumed what is learned. In the latter case, exemplars, learning is interpreted as the accumulation of chunks (also usually, in artificial languages, specific repeated sequences of letters). Exemplar-based system is “lexical in nature and includes both discrete lexical items and ready-made formulaic chunks of language” (Skehan, 1998). The rule-based system consists of “abstract representations of the underlying patterns of language” (Skehan: 53).

Skehan also (1998) distinguishes three aspects of production; 1) fluency (i.e. the capacity of the learner to mobilize his/her system to communicate in real time) 2) complexity (i.e. the utilization of interlanguage structures that are ‘cutting-edge’, elaborate and structured) and 3) accuracy (i.e. the ability of the learner to perform in accordance with target language norms). He suggests that language users vary in extent to which they emphasize fluency, complexity, and accuracy with some tasks predisposing them to focus on fluency, others on complexity, and yet others on accuracy.

The next theory was proposed by Robison (2001). He draws on a multiple-resources view of processing—that is, learners like native speakers, have capacity to attend to more than one aspect of language at the same time. According to this view, there is no trade-offs between
fluency, accuracy, and complexity (at least these last two), as Skehan claims.

Therefore, reviewing the related literature signifies the importance of studies on the effects of planning on the written performance of language learners. The studies in this field shed light upon the main concerns in language teaching methodology, syllabus design, as well as language testing particularly written examinations. For that reason, the present study tries to investigate the issues concerning planning through the following questions generated through the review of related literature:

1. What effect does proficiency have on L2 learner's performance of written personal task under planned vs. unplanned conditions in terms of concept load?
2. What effect does proficiency have on L2 learner's performance of written personal task under planned vs. unplanned conditions in terms of fluency?
3. What effect does proficiency have on L2 learner's performance of written personal task under planned vs. unplanned conditions in terms of complexity?
4. What effect does proficiency have on L2 learner's performance of written personal task under planned vs. unplanned conditions in terms of accuracy?

Study

Design

Language proficiency was between-participants variables and each had two levels. Planning condition, which was operationalized through on-line planning and pre-task planning, was a within-participant variable, i.e. the participants performed the task in both on-line planning and pre-task planning condition. In effect, the study employed a “within subjects” design, in which learners completed both the unplanned and planned tasks, rather than a “between subjects” design, in which learners were assigned to either an unplanned or planned task. By using a “within subjects” design, language production under both planning and no-planning conditions can be compared to reveal differences between conditions more clearly, as Kawauchi (2005) did.

Participants

Participants were 144 Iranian learners of English as a foreign language in Tabriz University. They were both high and low proficiency learners. They were divided into high and low proficiency on the basis of accidental sampling. They were all between 18 and 25 years old, and all were both females and males. They were 48 males and 96 females. At the time of data collection, most of them had been learning English as a foreign language in Iranian schools for 6 years, first in Junior school and then in high school. They had little opportunity to use English for communicative purposes outside the classroom. They were told that the tasks were for purposes of research only, and given that their teachers were not involved in the data collection in any way. They were informed that all findings would be confidential. They were not told the precise purpose of the study and were assured that the information collected would not impact their course grades.

MATERIALS

Task was carried out by participants in dyads. The task used was a personal task from Foster and Skehan (1996). The task required participants to describe how to get to her or his home from the college that participants were attending and then to turn off a gas cooker that had been left on. As it involved accessing information well known to the speaker and possibly already rehearsed in English, it was seen as requiring the least cognitive effort and allowing the greatest attention to language form. Moreover, it was reasoned that the nature of the task would require relatively simple linguistic forms to be used.

Procedures

After the participants and the materials were chosen, the procedure commenced. Two of the four classes were randomly assigned to either the unplanned or planned conditions.

In this study, planning was operationalized at two levels: pretask planning (PTP) and on-line planning (OLP). The participants performed the tasks in their normal classroom setting. Both their regular teacher and the researcher were present.

In the pre-task planning condition, the participants were requested to finish writing the story within 17 minutes and to produce at least 200 words. In this way, the participants pressured to perform the task with limited opportunities for on-line planning. The participants were given 10 minutes to plan their performance of the task. By using a “within subjects” design, language production under both planning and no-planning conditions can be compared to reveal differences between conditions more clearly, as Kawauchi (2005) did.
The researcher noted the time the participants spend on a given piece of paper and told to write down the story; however, the participants were not required to write a story elicited by the task was produced within the specified time limit.

In online planning condition, the participants were given a piece of paper and told to write down the story. They were told they could take as long as they like, and a researcher ensured that they began writing immediately. The researcher noted the time the participants spend on task to check that this is indeed longer than the time taken by the other group. Unlike the other group, however, the participants were not required to write a minimum of 200 words, as this may have been interpreted as requiring them to write quickly. Thus, the participants in this condition were allocated no time for pretask planning but ample time for online planning.

Measures of concept load, fluency, complexity, and accuracy were developed to evaluate the quality of the participants’ written production. Insofar as possible, these measures were the same as those used in studies of oral production (e.g., Foster and Skehan, 1996; Yuan and Ellis, 2003). However, changes to the fluency measures are needed to make them appropriate to written production as temporal phenomena, such as length of pauses, cannot be measured in writing. Thus, what follows is a detailed description of how the written samples were analyzed.

Concept load (Lexical Density or Type-Token Ratio) is a measure of the ratio of different words to the total number of words in a text. Concept load is normally expressed as a percentage and is calculated by the formula (Richards and Schmidt, 2002):

$$\text{Lexical density} = \frac{\text{number of unique words}}{\text{total number of words}} \times 100$$

However, regular Type-Token ratios are affected by length; that is, it is easier to obtain a high type-token ratio in a short text than in a long one (Ellis and Barkuizen, 2005). Thus, the present study used a sophisticated type-token ratio, that is, word types per square root of two times the words that take the length of the sample into account (Nariman-Jahan, 2011; Rahimpour and Nariman-Jahan, 2010). The present study used a sophisticated type-token ratio, that is, word types per square root of two times the words that take the length of the sample into account (Nariman-Jahan, 2011; Rahimpour and Nariman-Jahan, 2010). Fluency was measured by words per T-units (Ishikawa, 2006; Kuiken and Vedder, 2007; Nariman-Jahan, 2010). Regarding Syntactic complexity a measure of the ratio of clauses to T-units was adopted (Mehnert, 1998; Yuan and Ellis, 2003; Ellis and Yuan, 2004; Arnold, 2008; Wiggleworth and Storch, 2009; Nariman-Jahan, 2010). To code accuracy, following the previous studies of Rahimpour (1997, 2008), Errasti (2003), Larsen-Freeman (2006), Arnold (2008), and Nariman-Jahan (2010) it was operationalized as the number of Error-free T-units per T-units i.e., the percentage of T-units that do not contain any errors. All errors in syntax, morphology, lexical choice, and spelling were considered. Lexical errors are defined as errors in lexical form or collocation (e.g., “I was writing you). These measures were used for analysis because these indices have been determined to be best measures of second language development in writing (Larsen-Freeman, 2006).

RESULTS

To establish that the two planning conditions worked as anticipated, the length of time the participants in the two groups spent on tasks was measured. In accordance with the instructions given to the two groups, the OLP spent longer on tasks than the other group as Table 1 shows. Paired samples test in Table 2 showed that the difference in time taken to complete the task across the groups was statistically significant with the OLP group taking longer than the other group.

In order to find out the effect of proficiency in unplanned vs. planned conditions, series of paired-samples t-test were used on each of the four dependent variables. Table 3 presented a summary of the descriptive statistics for all the measures for the low proficiency learners. It provided the number of participants, means, standard deviations, and standard errors in mean of concept load, fluency, complexity, and accuracy for low proficiency participants in unplanned vs. planned conditions.

In order to answer the research questions, the linguistic outcomes from the unplanned and planned performance were compared. As can be seen in Table 3, the mean of

<table>
<thead>
<tr>
<th>Planning</th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of time (min.) planned</td>
<td>72</td>
<td>21.4306</td>
<td>2.80757</td>
<td>.33087</td>
</tr>
<tr>
<td>Unplanned</td>
<td>72</td>
<td>17.0000</td>
<td>.00000</td>
<td>.00000</td>
</tr>
</tbody>
</table>

Table 1: Paired Samples Statistics for Comparing the Length of Time Spent on Tasks

studies of Skehan and Foster (1996) and Ellis and Yuan (2004). The participants were given a sheet of paper to write notes but told not to write out the whole story. The notes were taken away before they start the task because removing the notes ensured that the language elicited by the task was produced within the specified time limit.
Table 2: Paired Samples Test for Comparing the Length of Time Spent on Tasks

<table>
<thead>
<tr>
<th>Planning</th>
<th>Paired Differences</th>
<th>t</th>
<th>df</th>
<th>Sig. (2-tailed)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mean</td>
<td>Std. deviation</td>
<td>Std. error mean</td>
<td>df</td>
</tr>
<tr>
<td>Length of time (min.)</td>
<td>4.43056</td>
<td>2.80757</td>
<td>.33087</td>
<td>13.39</td>
</tr>
<tr>
<td>planned- Unplanned</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Descriptive Statistics for Concept Load, Fluency, Complexity, Accuracy under Unplanned vs. Planned Conditions

<table>
<thead>
<tr>
<th>Measures</th>
<th>Planning</th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept Load</td>
<td>Unplanned</td>
<td>36</td>
<td>5.004</td>
<td>.52977</td>
<td>.08829</td>
</tr>
<tr>
<td></td>
<td>planned</td>
<td>36</td>
<td>5.0725</td>
<td>.68008</td>
<td>.11335</td>
</tr>
<tr>
<td>Fluency</td>
<td>Unplanned</td>
<td>36</td>
<td>9.3650</td>
<td>2.29879</td>
<td>.38313</td>
</tr>
<tr>
<td></td>
<td>planned</td>
<td>36</td>
<td>9.7356</td>
<td>2.52468</td>
<td>.42078</td>
</tr>
<tr>
<td>Complexity</td>
<td>Unplanned</td>
<td>36</td>
<td>1.3236</td>
<td>.23211</td>
<td>.03869</td>
</tr>
<tr>
<td></td>
<td>planned</td>
<td>36</td>
<td>1.3008</td>
<td>.18362</td>
<td>.03060</td>
</tr>
<tr>
<td>Accuracy</td>
<td>Unplanned</td>
<td>36</td>
<td>.6400</td>
<td>.15611</td>
<td>.02602</td>
</tr>
<tr>
<td></td>
<td>planned</td>
<td>36</td>
<td>.5931</td>
<td>.18137</td>
<td>.03023</td>
</tr>
</tbody>
</table>

Table 4: Paired Samples Test Results for Concept Load, Fluency, Complexity, Accuracy under Unplanned vs. Planned Conditions

<table>
<thead>
<tr>
<th>Measures</th>
<th>Planning</th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept Load</td>
<td>Unplanned</td>
<td>36</td>
<td>0.0711</td>
<td>.72739</td>
<td>.12123</td>
</tr>
<tr>
<td></td>
<td>planned</td>
<td>36</td>
<td></td>
<td>.72739</td>
<td>.12123</td>
</tr>
<tr>
<td>Fluency</td>
<td>Unplanned</td>
<td>36</td>
<td>3.7056</td>
<td>2.22767</td>
<td>.37128</td>
</tr>
<tr>
<td></td>
<td>planned</td>
<td>36</td>
<td></td>
<td>2.22767</td>
<td>.37128</td>
</tr>
<tr>
<td>Complexity</td>
<td>Unplanned</td>
<td>36</td>
<td>.02278</td>
<td>.22154</td>
<td>.03692</td>
</tr>
<tr>
<td></td>
<td>planned</td>
<td>36</td>
<td></td>
<td>.22154</td>
<td>.03692</td>
</tr>
<tr>
<td>Accuracy</td>
<td>Unplanned</td>
<td>36</td>
<td>0.4694</td>
<td>.19079</td>
<td>.03180</td>
</tr>
<tr>
<td></td>
<td>planned</td>
<td>36</td>
<td></td>
<td>.19079</td>
<td>.03180</td>
</tr>
</tbody>
</table>

In order to make these conclusions more justifiable, the results were compared using paired samples test. The results of paired samples test in Table 4 demonstrated that none of the measures yielded significance difference. In other words, although half of the measures favored planned over unplanned conditions, they were not significant.

In order to make these conclusions more justifiable, the results were compared using paired samples test. The results of paired samples test in Table 4 demonstrated that none of the measures yielded significance difference. In other words, although half of the measures favored planned over unplanned conditions, they were not significant.

Table 5 displayed a summary of the descriptive statistics for all the measures for the high proficiency learners. It provided the number of participants, means, standard deviations, and standard errors of mean of concept load, fluency, complexity, and accuracy for high proficiency participants in unplanned vs. planned conditions. As Table 5 showed, the means of concept load (X=4.6581), complexity (X=1.2258), and accuracy (X=0.7306) were higher under unplanned conditions than the means of concept load (X=4.6044), complexity (X=1.2111), and the mean of accuracy (X=0.7083) under planned conditions.
The results of paired samples test in Table 6 depicted that although none of the measures yielded significance difference, they reached almost significant.

CONCLUSIONS

The results provide a support for the hypothesis concerning concept load with a significant advantage for low proficiency learners. That is, low proficiency learners produced more concept load under planned condition. However, high proficiency learners did not differ significantly in the unplanned and planned conditions. This indicates that pretask planning does not facilitate the use of subordination for high proficiency learners. These findings are reliable with the findings of the research by Ortega (1999), Wigglesworth (1997), Kawauchi (2005), and Tavakoli and Skehan (2005). In fact, the low proficiency learners produced more fluent performance under planned condition but the high proficiency learners produced more fluent performance under unplanned condition. This is because the low proficiency candidates may focus on content. Thus, in this study, the low proficiency learners may use planning time to focus on content of their linguistic output which in turn gives rise to more concept load performance.

Reported findings corroborate the alternative hypothesis regarding fluency. That is, proficiency had an effect on the fluency of language production under planned condition which is along the lines of the findings of the research by Ortega (1999), Wigglesworth (1997), Kawauchi (2005), and Tavakoli and Skehan (2005). In fact, the low proficiency learners produced more fluent performance under planned condition but the high proficiency learners produced more fluent performance under unplanned condition. This is because the low proficiency learners, as pointed out before, employed planning time to focus on the content and this brings about enhanced fluency.

With regard to complexity, the results reported provide partial confirmation for this hypothesis. The findings of Wigglesworth (1997) indicated that the planning time only helped the more highly proficient learners to produce more complex language. The opportunity to plan did not

Table 5: Descriptive Statistics for Concept Load, Fluency, Complexity, Accuracy

<table>
<thead>
<tr>
<th>Measures</th>
<th>Planning</th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept Load</td>
<td>Unplanned</td>
<td>36</td>
<td>4.6584</td>
<td>.58031</td>
<td>.09672</td>
</tr>
<tr>
<td></td>
<td>planned</td>
<td>36</td>
<td>4.6044</td>
<td>.73900</td>
<td>.12317</td>
</tr>
<tr>
<td>Fluency</td>
<td>Unplanned</td>
<td>36</td>
<td>8.5142</td>
<td>1.99048</td>
<td>.33175</td>
</tr>
<tr>
<td></td>
<td>planned</td>
<td>36</td>
<td>8.5142</td>
<td>1.85124</td>
<td>.30854</td>
</tr>
<tr>
<td>Complexity</td>
<td>Unplanned</td>
<td>36</td>
<td>8.3050</td>
<td>.18592</td>
<td>.03099</td>
</tr>
<tr>
<td></td>
<td>planned</td>
<td>36</td>
<td>1.2111</td>
<td>1.6131</td>
<td>.02689</td>
</tr>
<tr>
<td>Accuracy</td>
<td>Unplanned</td>
<td>36</td>
<td>.7306</td>
<td>.16881</td>
<td>.02814</td>
</tr>
<tr>
<td></td>
<td>planned</td>
<td>36</td>
<td>.7083</td>
<td>.16312</td>
<td>.02719</td>
</tr>
</tbody>
</table>

Table 6: Paired Samples Test Results for Concept Load, Fluency, Complexity, Accuracy under Planning

<table>
<thead>
<tr>
<th>Measures</th>
<th>Planning</th>
<th>Paired Differences</th>
<th>t</th>
<th>df</th>
<th>Sig. (2-tailed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept Load</td>
<td>Unplanned</td>
<td>.05361</td>
<td>.567</td>
<td>35</td>
<td>.571</td>
</tr>
<tr>
<td></td>
<td>planned</td>
<td>.20917</td>
<td>.574</td>
<td>35</td>
<td>.570</td>
</tr>
<tr>
<td>Fluency</td>
<td>Unplanned</td>
<td>.01472</td>
<td>.454</td>
<td>35</td>
<td>.652</td>
</tr>
<tr>
<td></td>
<td>planned</td>
<td>.02222</td>
<td>.960</td>
<td>35</td>
<td>.344</td>
</tr>
</tbody>
</table>
seem to benefit learners at lower levels of proficiency. In this case, the findings of the present study are held up. That is, low proficiency learners produced less complex language under planned condition. Nonetheless, the result of the present study runs counter with Tavakoli and Skehan (2005) in the case of high proficiency learners. The reason may be that individual differences obscure the result of this study with reference to complexity. What's more, it may be due to the task implementation, that is, the way in which a task is performed. Tavakoli and Skehan performed the tasks in testing situations whereas the tasks in this study were performed in a normal classroom situation. Also, it may be due to the nature of tasks. Besides, planning condition (Foster and Skehan, 1996; Ellis, 2004; Elder and Iwashita, 2005; Ellis and Yuan, 2005; Kawauchi, 2005), individual differences (Wigglesworth, 1997; Ortega, 2005), and task type (Foster and Skehan, 1996; Mehnert, 1998; Robinson, 2001; Elder and Iwashita, 2005; Tavakoli and Skehan, 2005; Taguchi, 2007; and Rahimpour, 2007) may influence task performances.

Wigglesworth's (1997) claim that “for the high proficiency candidates, planning time may improve accuracy on some measures where the cognitive load of the task is high, but this effect does not extend to the low proficiency candidates (p.85)”. Thus, the findings of the present study is sustained with this claim since personal task was an easy task according to Skehan and Foster (1997), high proficiency learners could not produce more accurate performance under planned condition.

Thus, the results of this study offer further evidence for influence of planning on the written performance of L2 learners. As maintained by Yuan and Ellis (2003), teachers need to prepare learners to communicate by developing their linguistic capacity to communicate. One way of contributing to this goal is to ensure that there is “balanced goal development” (Skehan, 1998). That is, teachers need to ensure that learners’ capacity to use the L2 is balanced with regard to the three aspects of language-fluency, complexity, and accuracy. Skehan suggested that this balance “can best be handled simply by manipulating the time available for planning” (p.140). However, Skehan’s comments relate exclusively to pre-task planning. Yuan and Ellis (2003) suggested that manipulating opportunities for both pre-task planning and on-line planning may be needed. Thus, the findings of the study make it possible for a teacher or more outstandingly for a syllabus designer to design sequences of instructional activities that alternate attention to each of the areas so that the goal of balanced development can be obtained.

It also suggests that pre-task and on-line planning have somewhat different effects. This has important implications for both writing pedagogy and testing. That is, teachers may be able to manipulate the aspects of the writing (fluency, complexity, and accuracy) that L2 writers attend by varying the task conditions to allow sometimes for pre-task planning, sometimes for on-line planning, and sometimes for both. As a final point, testers who wish to enable L2 writers to present their best products for assessment may need to ensure that opportunities for both types of planning are available to testees (Ellis and Yuan, 2004).

REFERENCES
Acquisition. 20: 52-83.
APPENDIX A: Task Given to the Participants in Each Class

Personal Task

Sending Somebody Back to Turn off the Oven!!

In the afternoon, you are at school, and you have an important examination in fifteen minutes. You suddenly think that you haven’t turned off the oven after cooking your lunch. There is no time for you to go home. Explain to a friend who wants to help:
- How to get to your house
- How to get into the house and get to the kitchen
- How to turn off the oven off