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Abstract  
The rupture of water and sewer pipes leads to numerous accidents (subsidence, 
swelling, etc.). This is especially characteristic for clay, loess, peat and other 
soils. We considered the stress state of clay array at different models on fluid 
propagation from a fracture site. Accordingly, the problems are solved in 
cylindrical and spherical coordinates. The problem is solved by the methods of 
stationary and non-stationary moisture elasticity. The feature of the calculation is 
the accounting of the inhomogeneity of the clay during moistening.   
Keywords: Stresses, Humidity, Ground massif, Inhomogeneity, Moisture elasticity.  

 
INTRODUCTION 
 
One of the topical problems of soil mechanics is the problem of the stressed state of 
the soil massif when the underground pipeline is broken. The flowing moisture liquefies 
the adjacent soil; there are forced (humid) deformations that are constrained due to 
ground rejection. Well-known numerous accidents on the roads due to erosion of the 
ground, destruction of the road surface, etc. The problem of moisture elasticity, which 
combines the problem of moisture conductivity (moisture transfer) and the problem of 
mechanics, allows determining the stressed state of the soil massif when the 
underground pipeline is ruptured. The formulation of the problem also consists of two 
independent sections: the formulation of the problem of moisture elasticity and the 
formulation of the problem of mechanics, in this case the theory of elasticity. First, the 
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model of the problem of elasticity theory will be considered, since in the problem of 
moisture conductivity the model partially depends on the mechanical model. 



 

FORMULATION OF THE PROBLEM 
 
Mechanical model  
Figure 1 shows the calculation schemes used in solving problems on the stressed state 
of a rock massif with a hole. Scheme a) corresponds to the close location of the hole to 
the surface of the earth and the solution can be obtained only by a numerical method. 
The remaining schemes differ in the ratio of the depth of the cavity H to hole radius a, 
and the ratio of the fictitiously excised array radius b to the radius a. Under condition 
H>>b>>a, we obtain a scheme d) corresponding to an axisymmetric problem (for a 
cylindrical hole) or a centrally symmetric problem (for a spherical hole). The solutions 
given below correspond to this scheme, that is, the problems are one-dimensional.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1: Various calculation schemes for solving the problem of stress 

distribution near an underground cylindrical cavity. 
 

 

Inhomogeneity of soils  
For some soils (clay, loess, peat, etc.), humidification is characterized by a strong 
swelling, which leads to softening of the material. This leads to a significant change in 
the modulus of deformation of soil E. Figures 2 and 3 show the experimental 

dependences of E on the relative humidity, where is ws the humidity of the saturated 
soil (Davydov, 1979 and Industry 2000). 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2: Dependence of the deformation modulus 
of soil on its humidity: 1 - loam and clay; 2 - sandy 

loam.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3: Dependence of the deformation modulus of clay on 
relative humidity:1 - experimental dependence [Industry (2000)]; 

2 - approximating function. 

 

A mathematical dependence E(w) is necessary for calculations. The most suitable was 
the power function (in Figure 3, the approximating dependence is shown): 

E(w/ws)
-

 (1) 



Accounting inhomogeneity in the calculations leads to significant complications, since 
instead of differential equations with constant coefficients (at E=const.), It is necessary 
to solve equations with variable coefficients. 

 
Statement of the problems of moisture transfer  
Before proceeding with the formulation of the problem, let us consider the models of 
the propagation of a liquid from the place where a pipe is broken. Figure 4 shows two 
models considered below. In the model shown in Figure 4a, it is assumed that there is 
a gap between the soil and the pipe, and moisture first moves along the pipe, and then 
spreads to the ground in such a way that its front is a cylindrical surface. The second 
model (Figure 4b) corresponds to the propagation of moisture with a spherical front of 
its motion. Below, we consider the problems of moisture transfer in cylindrical and 
spherical coordinates in accordance with the mechanical model described in 2.1 
(Figure 1d) and the models shown in Figure 4. 

 
а) b)  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4: Models moisture distribution in soil at  pipe rupture: a) the distribution of 
moisture with a cylindrical front;  b) distribution of moisture with a spherical front. 

 
In order to obtain solutions for any material that does not take into account the physical 

characteristics of the material, we will use dimensionless coordinates: 

where cw-coefficient of moisture conductivity. 
Hereinafter based used dimensionless variables for time (t) and radius (r) 

=(cw/a
2
)t; =r/a (2) 

Here a-radius of the tube (Figure 1). 
The second Fick law taking into account the replacement of (2) takes the form: 

w  w 
 2  

t  (3) 
  

where 
2
=-∆ – the Laplace operator, which in polar coordinates, taking into account  
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(4)  
The axial symmetry, has the form and in spherical coordinates with allowance for the 
central symmetry:  
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 2   (5)    
       

The boundary conditions of the first kind for a hollow cylinder or sphere have the form: 

 a : w  ws 
 (6) 

b : w  w0 



 

where, ρa=1 and ρb=b/a. 

The initial condition in nonstationary problems has the form: 

=0; w=w0 (7) 
Thus, the problems are reduced to the solution of partial differential equations (3) with 
boundary and initial conditions (6 and 7). For the stationary regime both in cylindrical 
and spherical coordinates there is an analytical solution (Andreev et al., 2013). To 
solve equation (3) in the case of nonstationary regime, the method of separation of 
variables (Lykov,1967) is used and the solution is obtained in series with respect to 
Bessel functions (Kamke, 2003). Details of these solutions are given in (Andreev et al., 
2013 and Andreev et al., 2014). 
 
RESULTS AND DISCUSSION  
Stationary problem  
As an example, we present the results of calculations for the case of the cylindrical 
front of fluid motion (Figure 4a). Figures 5 and 6 shows graphs of dependencies 

stresses r and  obtained for the clay massif with the following initial data: a=0,25 

cm, b=2,5 m, H=10 m, w0=0.2, ws=0.363, cw=2.4*10
-7

 m/c
2
, s=29.95 KN/m

3
, v=0.4.  

Let's pay attention to the diagram . In the zone of tension (dangerous for soils), the 
stress in the inhomogeneous material is greater than in the homogeneous material, 
which emphasizes the importance of taking into account the inhomogeneity of the soils 
under moistening.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5: Diagrams of stresses r.  
–– Inhomogeneous material (E=E (r));  
- - - Homogeneous material (E=const). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6: Diagrams of stresses .  
–– Inhomogeneous material (E=E (r));  

- - - Homogeneous material (E=const). 

 

Nonstationary problems  
Axisymmetrical problem: Taking into account the relatively slow spread of the liquid 
into the soil, the problem is solved in a quasistatic formulation. Taking into account the 
complexity of the resolving equation, the solution is sought numerically. As was 
indicated above, the solution is a series of Bessel functions. These series do not 
converge well, and in order to obtain a stable result, the calculation was carried out 

taking into account the 100 terms of the series. Since the circumferential stresses  
are the most dangerous from the point of view of strength, we shall confine ourselves 

to the calculation results for these stresses. Figure 7 shows the stress diagrams  for 
different instants of time. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 7: Distribution circumferential stresses along the radius at 
different times: a) homogeneous material; b) inhomogeneous 

material. 
 

 

The jump on the diagram corresponding to =0 is due to an instantaneous change in 
the soil moisture during the rupture of the pipe, ie, there is a singular point here, and 
even an increase in the number of terms in the series does not make it possible to 
smooth this dependence. 
 

 
Based on the obtained results, two conclusions can be drawn:  
1.) Taking into account the inhomogeneity of the soil during swelling shows that the 
compressive stresses are greater in the vicinity of the tube rupture site than in the 
calculations for a homogeneous material, and at the periphery of the array stresses are 
tensile and also larger in the inhomogeneous material. Since the growth of 
compressive stresses does not cause danger, their growth is not principled in 
calculations for strength. However, the growth of tensile stresses is a danger to soils.  
2.) At the instant of time =30, the diagram  approaches to the stationary curve 
shown in Figure 6. It follows that this time corresponds to the output of the process to 
the steady state.  
Central symmetric problem: The solution of this problem is similar to the solution above. In 

deriving the resolving equations, instead of the expression for the Laplace operator (4) we 

used the formula (5). As in the previous case, the solution was obtained by a 



numerical method using 100 series members. Figure 8 shows the stress diagrams 

= for different instants of time.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 8: Distribution circumferential stresses along the radius at  
different times: a) homogeneous material; b) inhomogeneous material. 

 
Comparing this figure with Figure 8, it can be noted that both conclusions made above 
are valid for this case. The difference lies in the fact that when the liquid is distributed 
along spherical surfaces, the tensile stresses are less than in the case of the cylindrical 
front of the fluid. Because we probably do not know how the liquid is spreading out of 
the hole in the tube, it would be logical to average the results obtained for the two 
models shown in Figure 4. 
CONCLUSION  
Calculations of various bodies, taking into account the inhomogeneity caused by the 
influence of external fields (temperature, radiation, humidity, etc.) make it possible to 
significantly clarify the stress-strain state of these bodies. Numerous studies, including 
the author (Andreev, 2007, 2013 and Andreev et al., 2015) have shown that the 
direction "Mechanics of inhomogeneous bodies" is topical and requires further 
development. 
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