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ABSTRACT

K-mers are fundamental building block for many NGS applications. However, k-mers are error prone, posing
great challenges for downstream data analyses. We propose a statistical approach to effectively distinguish solid k-
mers from weak k-mers. Precisely, we calculate a z-score for each k-mer, and jointly determine whether it is really
solid based on its z-score and frequency. Experiments show that our approach effectively pinpoints out solid k-
mers having low frequency, achieving an average improvement of 11.25%.
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INTRODUCTION

The ever-increasing high throughput and dramatic
decreasing cost for next-generation sequencing (NGS)
technology provides great chance to revolutionize a
wide range of medical and biological research as well
as their induced application fields, such as medical
diagnosis, biotechnologies, virology, etc (Alic et al.,
2016; Zhao et al., 2017). However, the sequences are
not perfect, and there exists various kind of errors,
such as substituions, insertions, deletions, and
uncalled bases, e.g., substituation error rates range
from 1% to 2.5% and insertion and deletion error rate is
as high as 40% (Kelley et al., 2010; Goodwin et al.,
2015). The errors in a sequencing data has posed
great challenges for data analysis. Hence, correcting
these errors is the very first and critical step. Many
downstream applications can be beneficial from
corrected sequencing reads, such as sequence
assembly, variants calling, reads mapping, etc (Salmela
and Schroder, 2011). Dozens of approaches have been
proposed to correct errors, just to mention a few, Coral
(Salmela and Schroder, 2011), BLESS (Heo et al.,
2014), MEC (Zhao et al., 2017). These approaches are
heavily k-mer dependent.

A k-mer is a substring of a sequencing read having k
consecutive bases. The very first and essential step of
k-mer-based approach is usually mining of solid k-
mers. A solid k-mer is considered as the one having
frequency larger than a minimum threshold, while the
rest are weak (Heo et al., 2014). Although this simple

definition is effectively useful to distinguish solid k-
mers from weak k-mers, it still has obvious limitations.
The most important weakness is that a k-mer having
low frequency may not be weak. This is because the
sequencing depth is not uniform distributed due to
system bias, e.g., GC-content regions are difficult to
sequence. To this end, we focus on an important but
less study problem of refining solid k-mers by using
statistical analysis.

our model starts with counting k-mers by using KMC2
(Deorowicz et al., 2015), and splits all k-mers into solid
and weak set tentatively based on their frequency.
Later, z-score is computed for each k-mer and its
solidity is determined based on the z-score as well as
its frequency jointly.

MATERIALS AND METHODS

Data Sets

Four real NGS datasets collected in GAGE (Salzberg et
al., 2011) is used to exploit the capability of our model
in distcting solid k-mers from weak k-mers, i.e.,
Staphylococcus aureus (D1), Rhodobacter sphaeroides
(D2), Human Chromosome 14 (D3) and Bombus
impatiens (D4). We refer readers to GAGE for more
details.
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Pinpoint Minimum k-mer Frequency

KMC2 (Deorowicz et al., 2015) is borrowed in this study
to count the frequencies of k-mers. Based on the
results, we determine the minimum frequency used to
separate weak k-mers from solid k-mers. Other than
using various statistical models, such as Gamma +
Gaussian + Zeta distribution based (Kelley et al.,
2010), multinormial distribution based (Yang, et al.
2011), we simply set the minimum solid frequency of 5.
That is, a k-mer is considered as weak tentatively if its
frequency is less than 5. The rational is that an
erroneous k-mer appears exactly 5 times is very small.
Taking a human genome as an example, suppose

reasonably that the whole genome length is 3 x 10°,
the sequencing depth is 30 and the error rate is 1%,
then the number of erroneous k-mers appear exactly n
times is (1/3 x 0.01)" x 30 x 3 X 10%. When n is 4, the
value is 11.1; when nis 5, the value is 0.037.

Calculate z-Score of a k-mer

Given a k-mer k, we define its neighbor as N(x) by
N(k) = {K’:D(K, k') <dy,x' € K}, where D(k, k") is the
edit distance between k and k', and dy is the
predefined maximum distance. The default value of d

is 1 as used in this study, but user can adjust this value
to any reasonable integer. The k-mer cluster centered
at k is defined as C(k) = {k} U N(x), and the set of
frequencies associated with these k-mers is defined as
F(x) = {f(x):x € C(x)}. Based on F(k), the z-score of

K, z(x), is computed by z(kx) = %‘_“ where y is the

averaged frequency of F(kx) and o is the standard
deviation of F ().

Refine Solld k-mers

A z-score of a k-mer as well as its frequency are jointly
used to refine solid k-mers through the following two
criteria: (i) if f(x) < f, and z(k) = z,, then k is moved
from the weak k-mer set to the solid k-mer set and; (ii)
if f(k) =f,and z(k) < —z,, then kis moved from

the solid k-mer set to the weak k-mer set. The f, is the

minimum frequency which is set as 5 in this study, and
z,, is the maximum z-score used to distinguish weak k-

mers and solid k-mers. Z, is learned from the z-score

distribution of input data automatically. In this study, it
is optimized to 0.8.

RESULTS

We conducted experiments on the four real data sets.
Results show that z-score is able to refine both weak k-
mers and solid k-mers, particularly useful for
pinpointing out solid k-mers from weak k-mers, i.e., k-
mers having low frequency but is correct in reality. An

example of z-score distribution pertaining to k-mer
frequency is shown in Figure 1, which is derived from
Bombus impatiens at k=25. The highlighted k-mers
shown in the figure have relatively low frequency—less
than 8, while the z-score is pretty high—greater than 1.
Interestingly, almost all solid k-mers (the top right
region) have the similar level of z-score comparing to
these highlighted ones. These observations indicate
that the highlighted k-mers are very likely to be correct
k-mers instead of erroneous ones although their
frequency is very low. Hence, we move these k-mers
from the weak set to solid set. The z-score distribution
pertaining to the other three real data sets has similar
patterns compared to the one shown here.

By exploring the four real data sets, we found that the
proportion of k-mers that can be refined comparing to
the solely frequency determined k-mers are 12.3%,
14.2%, 11.4%, 7.1% for D1, D2, D3 and D4,
respectively. These refinements improve the purity of
both weak k-mers and solid k-mers, which can be used
for error correction in the downstream data analyses.

— — —

= ——

14 e

L}
75 100

50
K-mer frequency

Figure 1. The relation between z-score and k-mer
frequency.

The level of shade represents the density of the
distribution. The darker the color is, the more k-mers
are presented. The frequency of the k-mers highlighted
in the red box are less than nine, which are very likely
to be treated as weak for all existing k-mer based
approaches. However, they should be considered as
solid K-mers based on the very high z-score they have.
The data shown here is obtained from B. impatiens at
K=25.

CONCLUSION

A k-mer is a fundamental building block for many
sequencing analysis, particularly useful for error
correcton, sequence assembly, variants calling etc.
However, due to sequencing errors and bias, a k-mer
having low frequency may not be erroneous. Hence, the
distinguishing of solid k-mers only by frequency is not



optimal. Instead of overlook this issue by existing
approaches, we propose a novel idea of using z-score
to distinguish erroneously classified weak and solid k-
mers. Experiments show that z-score is sufficiently
useful to distinguish real solid k-mers. The average
proportion of refined k-mers is 11.25% for the four real
data sets.
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