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Abstract

The function of a protein limits its evolutionary path through sequence space. Sequence homolog collections 
document the results of millions of evolutionary experiments in which the protein changes in accordance with 
these limitations. It is extremely difficult to decipher the evolutionary history contained in these sequences and 
use it for engineering and prediction applications. Due to the development of low-cost high-throughput genome 
sequencing, the potential value of resolving this problem has increased (Knop D et al., 2015). It is difficult to 
separate genuine co-evolution connections from the chaotic collection of apparent correlations. We tackle this 
problem by inferring residue pair couplings using a maximum entropy model of the protein sequence, restricted 
by the statistics of the multiple sequence alignment. Unexpectedly, we discover that the strength of these inferred 
couplings is a very good indicator of the closeness of residues in folded structures. In fact, the highest-scoring 
residue couplings are remarkably exact and evenly dispersed to characterise the 3D protein structure (Ravi B et 
al., 2013).

Human proteome sequence variation data may be used to get functional understanding of 3D protein structures. 
We examined 3D positional conservation in 4,715 proteins and 3,951 homology models utilising genetic variation 
data from over 140,000 people, employing 860,292 missense and 465,886 synonymous variants. At least one 
intolerant 3D site is present in 60% of protein structures, as shown by a significant decrease of observed over 
anticipated missense variation. Data on structural intolerance were connected with shallow mutagenesis data 
for 1,026 proteins and functional readouts from deep mutational scanning for PPARG, MAPK1/ERK2, UBE2I, 
SUMO1, PTEN, CALM1, CALM2, and TPK1. Different characteristics for ligand binding pockets and orthosteric 
and allosteric locations were found by the 3D structural intolerance analysis. A definition of functional 3D 
locations proteome-wide is supported by extensive data on human genetic diversity (Valverde ME et al., 2015).

Mini Review

INTRODUCTION
The main component of living things is protein. It engages 
in a variety of biological processes after interacting with 
other proteins. PPIs, or protein-protein interactions, aid 
in understanding how proteins operate, the origins and 
progression of illnesses, and the development of novel 
medications. The discovery of protein-protein interactions, 
however, falls far behind the sequences of the proteins 
that are already known. Researchers put forth a number 
of computational techniques to shed light on protein 

interactions in order to close this knowledge gap. These 
techniques just rely on protein sequence information. 
With the development of technology, several kinds of 
information about proteins are now accessible, including 
data on their three-dimensional (3D) structures. Deep 
learning techniques are currently being effectively applied 
in several fields, including bioinformatics (Sánchez C 2010).

Therefore, current research focuses on using many 
modalities, such as deep learning algorithms and 3D protein 
structures and sequence data, to predict PPIs. There are 
various steps to the suggested strategy. Using their 3D 
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coordinates and three properties, such as their hydropathy 
index, isoelectric point, and charge of amino acids, we first 
obtain a number of depictions of proteins. The building 
components of proteins are amino acids (Oloke JK 2017). 
These representations of proteins are analysed using a 
pre-trained ResNet50 model, a subtype of a convolutional 
neural network, to extract features. Here, another modality 
of protein sequences is employed, namely autocovariance 
and conjoint triad, which are two extensively used 
sequence-based techniques to encode proteins. To obtain 
sequence-based information in its compact form, a stacked 
autoencoder is used (Rom O et al., 2016).

In order to predict labels for protein pairings, the information 
gleaned from several modalities are finally concatenated 
in pairs and put into the classifier. On the human PPIs 
dataset and the Saccharomyces cerevisiae PPIs dataset, we 
conducted experiments and contrasted the outcomes with 
cutting-edge deep-learning-based classifiers. The proposed 
strategy yields better outcomes than those produced by 
the currently used techniques. Numerous tests on various 
datasets show that our method of mixing and learning 
characteristics from two separate modalities is effective for 
PPI prediction (Hampton T 2017).

The space of potential sequences and, consequently, 
structures compatible with a functioning protein in the 
context of a replicating organism is continually being 
sampled by the evolutionary process. Strong selection 
constraints make it impossible for amino acid changes 
to take place in certain places, making it possible to 
identify homologous proteins from a variety of species 
by comparing their sequences. The harmony between 
sequence exploration and restrictions in this evolutionary 
record, as represented in protein family databases like 
PFAM, is beautiful. Strong limitations on sequence variation 
are imposed by conservation of function within a protein 
family, and this typically ensures that all family members 
have comparable 3D structures (Rom O et al., 2018).

The level of genetic variation in the human population 
is described in depth by recent large-scale sequencing 
initiatives of the human genome and exome. The human 
exome has been found to include about 4.5 million 
missense (amino acid-changing) variations as of this writing. 
The connection between genetic variations and illness 
has received a lot of attention. These data, however, also 
offer a rare chance to examine protein structure-function 
correlations in vivo. The genetic variation distribution 
pattern, in particular, describes the functional constraints 
on structural and functional changes to a specific protein. 
The inference of crucial 3D locations may be instructive for 
drug development and action mechanisms like as selectivity, 
resistance, and toxicity (Caldow MK et al., 2016).

It has been possible to locate significant areas inside 
these buildings using a number of different techniques. 
The deleteriousness of genetic variations in a protein may 

be assessed using genetics-based scoring metrics; this 
characteristic is highly correlated with both molecular 
functioning and pathogenicity. Scores may take interspecies 
conservation into account to find "constrained components" 
that may be signs of potential functional elements. The 
distribution of variations in 3D space has not received 
as much attention in previous techniques as gene-level 
characteristics (such as essentiality, burden of variation, 
etc.) and linear studies of variation in a gene. To evaluate 
the clustering of somatic variations in protein structures, 
further techniques have been developed in the field of 
cancer.

Described Using exome sequence data from The Cancer 
Genome Atlas (TCGA) from up to 7,215 samples, 23 types 
of cancer, and over 975,000 somatic mutations, the 
identification of protein amino acid clustering (iPAC), spatial 
protein amino acid clustering (SpacePAC), graph protein 
amino acid clustering (GraphPAC), and quaternary protein 
amino acid clustering methods analysed 3D position and 
clustering of mutations. Recently, a comparison of methods 
for the subgene-resolution identification of cancer drivers 
was presented. It should be highlighted that scoring 
techniques used in oncology do not prioritise intolerance 
to variation in the human proteome as a whole, but rather 
mutational clustering, which is extremely important in 
cancer biology (Heresco-Levy U et al., 1999).

Protein serves as the primary building block of all living things. 
It participates in a variety of biological processes. Hormone 
control, metabolism, signal transmission, cell transcription, 
and replication are some of these processes. The majority 
of these processes involve various protein interactions. 
Understanding biological processes, developing novel 
medications, and determining the progression and origins 
of illnesses are all made possible by the study of protein-
protein interactions. Additionally, using gene interaction 
network analysis and PPI information, it is possible to 
anticipate therapeutic targets, for instance in the case of 
harmful microorganisms. PPIs have been discovered using 
a variety of high-throughput experimental approaches, 
including tandem affinity purification (TAP), yeast two-
hybrid (Y2H), and mass spectrometric protein complex 
identification.

CONCLUSION
However, these experimental techniques for detecting 
PPI have several drawbacks, such as the fact that they are 
expensive and time-consuming, which prevents them from 
investigating all PPI networks. Additionally, the experimental 
setting and operational procedures have an impact on 
these methodologies' results, leading to significant false 
positives (FP) and false negatives (FN). In order to effectively 
predict protein-protein interactions, strong computational 
approaches must be developed in addition to experimental 
techniques.

Using the most recent technology, researchers have gathered 
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multi-modal representations of biological data. The order of 
amino acids is one type of depiction, whereas a 3D picture of 
a protein's structure is another. These two protein-related 
modalities each have unique information on proteins that 
works well together. Deep learning algorithms have recently 
made it simpler to discover valuable characteristics from 
several modalities. The availability of multi-modal biological 
data has already been used by certain researchers in their 
work. Have employed a multimodal technique to identify 
protein distant homology

Thus, the first obstacle is to eliminate the impact of confusing 
elements in order to solve the inverse sequence-to-
structure problem. The ability to anticipate the protein fold 
depends on whether the evolutionary process has revealed 
enough residue interactions that are uniformly dispersed 
(spread) throughout the protein sequence and structure. 
The precision of 3D structure prediction utilising the 
inferred contacts is the final performance criteria. Previous 
research coupled a limited number of evolutionarily inferred 
residue interactions with additional structural sources of 
information to correctly predict the structures of several 
smaller proteins. However, there are still three significant 
unanswered issues with the use of residue-residue couplings 
deduced from evolution to predict protein fold.

The first is whether it is possible to create an approach 
that is sufficiently reliable to recognise causal connections 
that represent evolutionary restrictions. The second is 
whether the inferred, evolutionary-plausible connections 
predominantly reflect closeness between residues. Third, 
without the aid of existing three-dimensional structures, a 
protein fold be predicted using the inferred residue-residue 
proximities.
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