

Rapid Communication

Plant Nutrition: Essential Elements, Uptake Mechanisms, and Physiological Significance

Miriam Solberg

Nordic Institute of Plant and Soil Sciences, Oslo, Norway
E-mail: m.solberg@nips.os

Received: 02-SEP-2025, Manuscript No. IRJPS-25-177138; **Editor assigned:** 04-SEP-2025, PreQC No. IRJPS-25-177138(PQ); **Reviewed:** 18-SEP-2025, QCNo.IRJPS-25-177138; **Revised:** 23-SEP-2025, Manuscript No. IRJPS-25-177138 (R); **Published:** 25-SEP-2025

ABSTRACT

Plant nutrition encompasses the acquisition, transport, and utilization of essential mineral elements necessary for plant growth, development, and productivity. Plants require a balanced supply of macronutrients such as nitrogen, phosphorus, potassium, and magnesium, as well as micronutrients including iron, zinc, and copper. These nutrients support vital processes from photosynthesis and enzyme activation to hormone synthesis and cell structure formation. The soil environment, root architecture, and microbial symbioses collectively influence nutrient availability and uptake efficiency. Modern research has highlighted the importance of root-microbe interactions, nutrient transporters, and signaling pathways that regulate mineral homeostasis. As global food production increasingly depends on nutrient-efficient crops, understanding plant nutrition becomes crucial for sustainable agriculture. This article reviews the principles of plant nutrition and describes how plants absorb, transport, and utilize essential minerals to maintain physiological balance and optimize growth.

Keywords: Plant Nutrition, Essential Elements, Mineral Uptake, Nutrient Transporters, Macronutrients, Micronutrients, Soil Fertility, Root Physiology.

INTRODUCTION

Plant nutrition is a fundamental aspect of plant biology, governing how plants obtain and utilize essential mineral elements required for growth and metabolic functioning. Unlike animals, plants synthesize their own food through photosynthesis, yet they still depend on external sources for minerals that support biochemical and physiological processes. These nutrients are absorbed largely from the soil solution through roots and subsequently distributed throughout the plant. The availability, mobility, and balance of nutrients determine plant health and productivity. Essential nutrients are categorized into macronutrients and micronutrients based on plant requirements. Macronutrients such as nitrogen, phosphorus, potassium, calcium, magnesium, and sulfur are required in relatively large quantities (Khosla et al., 2024). They form key structural and functional components of plant tissues, including proteins, nucleic acids, membranes, and chlorophyll. Micronutrients such as iron, zinc, manganese, copper, boron, molybdenum, and chlorine, though needed in smaller amounts, are indispensable for enzyme activation and regulatory functions.

Citation: Miriam Solberg (2025). Plant Nutrition: Essential Elements, Uptake Mechanisms, and Physiological Significance .IRJPS. 16: 28.

Nutrient availability in soil is strongly influenced by physical, chemical, and biological factors. Soil pH affects the solubility of many nutrients, with acidic conditions often limiting phosphorus and molybdenum availability while enhancing iron and manganese solubility. Soil texture determines the capacity to retain nutrients; for instance, clay soils can hold more nutrients than sandy soils. Organic matter contributes to nutrient retention, microbial activity, and improved soil structure (Bruyant et al., 2024).

Root systems play a central role in nutrient acquisition. Their architecture—including length, density, branching patterns, and surface area—determines how effectively they explore the soil environment. Fine root hairs increase absorptive capacity and enable plants to access nutrients that are immobile in soil, such as phosphorus (Barker & Pilbeam, 2015). Root growth patterns also respond dynamically to nutrient patches, enhancing uptake efficiency in heterogeneous soils. Plants employ sophisticated uptake mechanisms involving specific transport proteins embedded in root cell membranes. These transporters regulate the entry of nutrients such as nitrate, phosphate, potassium, and various metal ions. The uptake process is selective and tightly controlled to maintain nutrient homeostasis and prevent toxicity (Koch & Sessitsch, 2024). Once inside the plant, nutrients are transported through xylem and phloem to reach growing tissues, storage organs, and metabolic sites. Nutrient deficiencies lead to characteristic symptoms that reflect the physiological roles of specific elements. Chlorosis, necrosis, stunted growth, and poor root development often indicate imbalances in nutrient supply. Understanding these symptoms helps diagnose nutritional disorders and guide soil amendment strategies. In agriculture, maintaining an optimal nutrient balance is crucial not only for yield but also for produce quality. Environmental stresses such as drought, salinity, and temperature extremes affect nutrient uptake by altering root function, soil chemistry, and microbial communities. Under such stresses, plants may adjust their nutrient requirements or modify transport processes to maintain internal balance. Nutrient-efficient cultivars capable of sustaining growth in challenging environments are increasingly important in modern crop improvement efforts. Advances in plant genomics and molecular biology have expanded our understanding of nutrient signaling pathways. Genes encoding nutrient transporters, transcription factors, and regulatory proteins are now being explored as targets for genetic engineering and breeding programs. These advances support the development of crops with improved nutrient use efficiency, contributing to sustainable agricultural practices and reduced fertilizer dependency Souri & Hatamian (2019).

CONCLUSION

Plant nutrition is a complex and essential component of plant growth and productivity, involving the acquisition, transport, and utilization of mineral elements from the soil. The interplay between soil properties, root physiology, microbial associations, and molecular signaling mechanisms determines how effectively plants meet their nutritional needs. A balanced supply of macro- and micronutrients supports vital physiological processes, while deficiencies can severely impair growth. As modern agriculture faces challenges related to soil degradation, climate stress, and increasing global food demand, understanding plant nutrition is vital for developing nutrient-efficient crops and sustainable farming systems. Continued research in root biology, soil ecology, and nutrient signaling will play a key role in advancing plant nutrition science.

REFERENCES

Barker, A. V., & Pilbeam, D. J. (Eds.). (2015). *Handbook of plant nutrition*. CRC press.

Bruyant, P., Moënne-Loccoz, Y., & Almario, J. (2024). Root-associated Helotiales fungi: Overlooked players in plant nutrition. *Soil Biol. Biochem.* 191, 109363.

Khoso, M. A., Wagan, S., Alam, I., Hussain, A., Ali, Q., Saha, S., ... & Liu, F. (2024). Impact of plant growth-promoting rhizobacteria (PGPR) on plant nutrition and root characteristics: Current perspective. *Plant Stress*, 11, 100341.

Koch, H., & Sessitsch, A. (2024). The microbial-driven nitrogen cycle and its relevance for plant nutrition. *J Exp Bot.* 75(18), 5547-5556.

Souri, M. K., & Hatamian, M. (2019). Amino chelates in plant nutrition: a review. *J. Plant Nutr.* 42(1), 67-78.