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With cost of feed being a major factor in the overall cost of production, it is imperative that those 
engaged in the training of nutritionists and animal producers give trainees adequate knowledge and 
skills to make informed decisions.  This paper shows how to formulate a least-cost diet in linear 
programming. The computer output is discussed and the importance of proper interpretation of the 
sensitivity report is particularly emphasized based on Microsoft Excel

®
 Solver output format. 
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INTRODUCTION 
 
Feed costs account for 50-80% of the total costs in 
animal production (Pond et al., 1995).  In pig production 
costs account for 75-85% (Gallenti, 1997), over 60% in 
poultry production (Rose, 1997), and in milk production 
feed costs are the largest expense (Bath, 1985). 
Therefore procedures that reduce feed costs are likely to 
increase net incomes in animal agriculture.   Ration 
formulation is one of the areas that one can use to 
reduce on the cost of feed. 

Several methods have been used in formulating and 
balancing rations. These include the Pearson Square, 
simultaneous equations, trial and error, and linear 
programming (LP). If we choose to formulate and mix 
feed aiming at a nutritionally balanced and adequate diet 
while keeping the cost at the minimum then LP is the only 
candidate.    Even when LP is used, what our farmers 
and feed mill operators get from nutritionists are simply 
the proportions in which to mix the ingredients. The 
"what-if" scenarios are never part of the package. 

The trend nowadays in the job market is such that 
employers require employees who are numerate and 
computer literate. As observed  by  Oakshott  (1997),  the  
 
 
 
*Corresponding author email: mnabasirye@agric.mak.ac.ug. 
256-414-533580/256-772-519966 . Fax: 256-414-531641. 

 
 
ability to use computer software, and to be able to make 
sensible recommendations based on the output from the 
software, is an essential prerequisite to the success of 
employee and ultimately the employer. Because many of 
these programs involve the use or the development of 
models, an understanding of how these models work, as 
well as their strengths and weaknesses, is an important 
skill. 
 
 
Linear programming 
 
If the feasible region is a subset of the non-negative 
portion of R

n
, defined by linear equations and inequalities, 

and the objective function to be minimized or maximized 
is linear, then we have a linear programming problem 
(Meyer, 1985).  Selecting the best alternative out of a 
large number of possibilities is called optimization. 

Linear programming has been widely used in livestock 
rations (Lara, 1993); and to formulate diets, nutritionists 
should be knowledgeable in diet specifications as well as 
interpretation of results (Pond et al., 1995). One of the 
outputs of an LP formulation is a sensitivity report. 
Sensitivity analysis (also known as parametric 
programming or post-optimality analysis) should be 
stressed as one of the most important issues in LP and 
should arise with every model (Render and Stair, 1994).  
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The rest of this paper is on how to formulate a least-cost 
diet, and how to utilize the computer output in making 
informed decisions. 
 
 
The least-cost ration 
 
Mathematical formulation of the linear problem 
 
Given restrictions (constraints) on the use of a given set 
of inputs, and the target values to be met, the following 
assumptions are necessary for a least-cost ration: 
1- all inputs into the ration are infinitely divisible, 
2- all the coefficients (objective and activity) are known 
with certainty, 
3- the total of all activities equals the sum of individual 
activities. In algebraic terms, our formulation takes the 
following form: 
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C = cost of ingredient j 

j
x  = quantity of ingredient j 

ij
a = quantity of nutrient i in ingredient j 

i
b = required amount of nutrient i in the ration 

q  = weight value.  

The constraint type (equality or inequality) depends on 
the nutrient or the nutrient balance required in the ration. 
We may need to set a minimum level for a given nutrient, 
rather than zero, because of its desirable characteristics. 
Likewise an upper limit may be necessary due to 
undesirable characteristics or simply to avoid imbalance 
of nutrients especially if this nutrient costs less than other 
nutrients. If we denote the lower and upper limits of 

nutrient i  in a unit of the feed as il ′  and iu′  respectively, 

then we have 
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The  constraints  can  then  be  modified  as  follows: 
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Assuming a symmetrical probability distribution, 

formulating rations basing on average nutrient values 
means meeting nutrient requirement 50% of the time. 
Likewise rations formulated basing on average nutrient 
requirements means meeting requirement of 50% of the 
animals. Ingredient nutrient variation and variation in 
nutrient requirements need to be accounted for when 
formulating rations.   

By taking nutrient requirements and ingredient 
nutrients as random variables, we can use the 
Mathematical Expectation procedures to account for this 
variability.  

The expected (mean) quantity of nutrient in the ration 
is given by  
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And the variance by 
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where 
i

R  is the quantity of nutrient i per day 
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A  is the expected value of nutrient i in 

ingredient j 
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x  is the j

th
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v  is the variance of 
ij

A  

V () denotes the expectation operator for the weighted 

average. 
Since this is a situation of independent random variables, 
the second term of the variance equation drops out, as 
the covariances are zero (Freund, 1994), giving the 
variance as 
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If our interest is to have 
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R  exceed the nutrient 

requirement ( 
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b ) a prescribed percentage  of  time  (
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α ),  
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α >0, then we need to 

transform 
i

R  into a standard normal variable. 

From the statistical theory, if R denotes a normally 
distributed random variable, a new variable, 

( ( )) / ( )R E R V Rφ = − , is distributed as a standard 

normal variable with ( ) 0E φ = and ( ) 1V φ = .    
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The first term can be substituted by the standard normal 
variable to give 
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This can now be written in deterministic terms as 
 

2

ij j i ij j
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where second term of the RHS (which is a function of 
the variance of nutrients in the ration) is taken as the 

safety factor, and φ  is the standard normal deviate 

whose value is determined by the requested probability of 

success (
i

α ). 

By accounting for nutrient variability we have arrived 
at a non-linear formulation of the mean and variance. 
Non-linear programming algorithms are available and 
very capable of handling this problem. However, if we 
have to use linear programming then these non-linear 
components must be linearised. A linear approximation 
by Rahman and Bender (1971) replaces 

2

ij j
v x∑   with  

ij j
xδ∑  

But this simplification results in a mathematical error 
(Tozer, 2000; D'Alfonso et al., 1992) of assuming 

a b+  is equal to a b+ , where a  and b  are 

positive real numbers. Nevertheless, as demonstrated by 
Rahman and Bender (1971) the approximation is 
acceptable as the inherent bias in this approximation is 
such that in no case would the actual probability of 
meeting the requirements be less than the specified 
value. The probability of success should be determined 
by carefully considering the benefit foregone if the 
requirement is not met vis-a-vis the loss if the 
requirement is exceeded.  

 
 

Implementation 
 
LINDO (Linear Interactive aNd Discrete Optimizer), 
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GAMS (General Algebraic Modelling System) and 
Microsoft Excel® Solver are some of the numerous 
software packages dedicated to solving linear 
programming problems. However, Microsoft Excel® is 
perhaps the most popular spreadsheet used both in 
business and in universities and as such is very 
accessible. Second to this, the spreadsheet offers very 
convenient data entry and editing features which allows 
the user to gain a greater understanding of how to 
construct linear programs. For the purposes of this paper, 
only the output format from Microsoft Excel® Solver is 
presented. 
 
 

Interpretation of the computer output 
 
The least-cost formulation is given at a cost indicated in 
column "Final Value" under "Target Cell" section 
(Figure1).  

The amounts in which to mix the ingredients are given 
in column "Final Value" under "Adjustable Cells" section. 
Slack value indicates the magnitude by which the 
calculated amount deviates from the required amount. 
Constraints with slack values of zero are said to be active 
or binding whereas for non-zero are inactive or non-
binding. Now that the optimal solution to our LP problem 
has been found, what next?  Recall that this optimal 
solution was arrived at under deterministic assumptions: 
prices for ingredients were assumed to be fixed, nutrient 
composition fixed, nutrient requirements fixed. However, 
in a real world situation these factors are dynamic. 
Therefore when we get an optimal solution, we need to 
see how sensitive our optimum solution is to model 
assumptions and data changes without having to re-solve 
the entire problem. This is what sensitivity analysis is 
about - giving insight into "what-if questions". 
 
 
Sensitivity analysis  
 
The discussion will focus only on 1) the variation of a unit 
in the Right Hand Side of constraints and 2) relative 
variation of optimized target function.  
 
 
Change in the RHS  
 
From the mathematics of the Simplex method we know 
(for an optimal basic feasible solution that is degenerate) 
that 
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where B  is an optimal basis for the primal problem and 

c
B

 is its associated cost vector, 

R  is the index set for the non basic variables 
j

x  that 

may include both slack and structural variables, 
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Microsoft Excel 11.0 Answer Report    

Worksheet: [Book1]Sheet1    

Report Created: 8/5/2006 21:16:01    

       

Target Cell (Min)     

 Cell Name Original Value Final Value   

           

       

Adjustable Cells     

 Cell Name Original Value Final Value   

           

           

           

       

Constraints     

 Cell Name Cell Value Formula Status Slack 

       

       

             

             
 

 
Figure 1.  Microsoft Excel 11.0 Answer Report Format 
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 Since the current basic feasible solution remains feasible 

with slight perturbation of the z  RHS 
i

b , optimality is 

maintained.  Given 
*

z  as the optimal Objective Value 

(OV) and 
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This means 
i

w ∗  is the rate of change of the objective 

value per unit increase in the 
thi  RHS value, given that 

the current non basic values are held at zero (regardless 

of feasibility).  Since * 0
i

w ≥ , z ∗  will change (or stay 

constant) as 
i

b  changes. 

 
 
Sensitivity analysis report 
 
(Figure 2). The values in the "Shadow Price" column 
indicate rate of change in the OV as (RHS) changes.  
It is important to note that shadow prices are dual prices 
in LINDO. A positive shadow price means that the OV 

and the RHS move in the same direction and a negative 
shadow price means that the OV and RHS move in 
opposite directions. There may be a need to reduce the 
OV for economic reasons. Consider a case where the 
production costs are such that this OV is above the 
break-even point. Loosening on one of the active 
requirements would be helpful. The limits within which we 
can change the RHS are given by values under 
"Allowable Decrease" and "Allowable Increase". As our 
interest, in this case, is to cut down the costs, we are only 
interested in loosening the RHS. The values in column 
"Shadow Price" are the rate of change in the OV as the 
RHS changes. However, if the priority is to make a given 
constraint (requirement) in the ration less marginal, we 
could raise it by any value up to the "Allowable Increase" 
value. For every unit increase in constraint (requirement), 
the OV would be increasing by a corresponding shadow 
price value. Going beyond the allowable range, the rate 
of change in the current solution may not hold. Even 
when one is still within the allowable range, there may be 
a need to stop increase or decrease of RHS. The level at 
which to stop would be determined by economics of feed 
production and the level that is not detrimental to the 
animal. 
 
 
Change in the cost vector 
 
Here we are concerned with the cost of one of the 
variables changing, say, from Ck to C'k in a given optimal  
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Microsoft Excel 11.0 Sensitivity Report    

Worksheet: [Book1]Sheet1     

Report Created: 8/5/2006 21:16:02     

        

Adjustable Cells      

     Final Reduced Objective Allowable Allowable 

 Cell Name Value Cost Coefficient Increase Decrease 

        

        

               

        

Constraints      

     Final Shadow Constraint Allowable Allowable 

 Cell Name Value Price R.H. Side Increase Decrease 

        

        

               

               
 

 
Figure 2.  Microsoft Excel 11.0 Sensitivity Report Format 

 
 
 
basic feasible solution. This change in the cost vector can 
be on: 
a) ingredients not included in the optimal solution (the 
non basic variables), 
b) ingredients included in the optimal solution ( basic 
variables).  
 
 
Ingredients not included in the optimal solution (the 
non basic variables) 
 
In this case Zk - Ck (Zk -Ck≤0 is the condition for optimality 
in a minimization problem) is replaced by Zk - C'k.  But Zj 

is not affected for any j since c
B

 is not changed.  

However, if the cost of a non basic variable reduces 
sufficiently enough such that Zk - C'k becomes positive, 
then this ingredient can now be included.  The amount by 
which Ck must reduce for the non basic variable to be 
used in the model, is given by the Zk - Ck values indicated 
in the final simplex tableau. 

Alternatively, this value can be read off directly under 
"Reduced Cost" column. When the cost reduces by the 
exact value indicated "reduced cost", it does not mean 
that the inclusion of this ingredient will reduce the OV. 
Inclusion of this ingredient at this cost means that we now 
have two optima, the original (without this ingredient) and 
the new (with this ingredient). Choice between these two 
optima depends on knowledge of animal nutrition rather 
than economic reasons. Ingredients included in the 
optimal solution (basic variables).  Consider a situation 
where the cost of a given ingredient has gone up (other 
factors constant).  This means the OV goes up as well. 
As the cost of an ingredient goes up, we might use less 

and less of it, until a certain level when none of it is used 
in the optimal solution. But when do we know when the 
price has become prohibitive. The price of an ingredient 
can vary over a given range without influencing the 
optimal ration.   Looking at "Adjustable Cells" section we 
see values for allowable increase and decrease.   This is 
the range within which the cost can vary without changing 
the optimal solution.  By optimal solution staying the 
same refers to the optimal values of all the variables, 
including the slack values, but the total cost will increase 
by a value equivalent to the product "Final Value" of a 
given ingredient and the difference between original cost 
and new cost of the ingredient.  

Let         X1  be original objective coefficient 
X2 the new objective coefficient 
X3 the final value 
C the original OV  
then the new OV (NOV) is given by 
NOV = C + (X2-X1)*X3 
It is therefore advisable to recalculate the profit to 

ascertain that the given increase in cost is cost- effective.  
However, if the cost of a given ingredient increases by 
more than the allowable amount, the optimal value of this 
ingredient should decrease. 

As Wendell (1985) notes, the foregoing sensitivity 
analysis makes it difficult for a decision maker to handle 
more than one coefficient or term at a time. For a 
discussion on how to consider simultaneous and 
independent changes in the objective function and in the 
RHS, refer to Wendell (1985).  This simultaneous and 
independent approach is desirable in ration formulation 
analysis, as in nature these simultaneous changes are 
bound to happen. 
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CONCLUSION 
 
Applied mathematics is a powerful tool by which we can 
better conceptualize the nutritional-economic models. 
However, it should be used within the biological context. 
It is therefore essential to have solid grounding in animal 
nutrition in order to make sensible decisions.  Central to 
proper interpretation of an LP output is an understanding 
of strengths and limitations of these optimization models. 
Although Microsoft Excel® Solver uses an efficient 
optimization algorithm, one has to setup the spreadsheet 
model in an appropriate form adhering to technical 
restrictions imposed by Solver. It is therefore essential to 
have adequate knowledge of how these models work for 
good modelling practice.   Fylstra et al. (1998) describes 
some of the common pitfalls in Microsoft Excel® Solver.  
To take advantage of the benefits of stochastic 
programming, there is need to have variances and/or 
standard deviations of nutrients documented alongside 
the nutrient means in the ingredient data bases during 
compilation by researchers and nutritionists. 
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