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Depression, a bewildering and burdensome illness, is one of the commonest psychiatric diseases. It is 
expected to be the second leading contributor to Global Disease Burden by 2020. The objective of the 
study was to determine the effect of nifedipine on the responses of imipramine, sertraline  and 
furosemide in the forced swim test  (FST)  and tail suspension test (TST)  in mice. Groups of mice were 
housed in iignali  metal cages for  control, nifedipine + imipramine, nifedipine + sertraline and nifedipine 
+ furosemide groups and were treated for 30 days with placebo, nifedipine (5mg/kg) + imipramine 
(10mg/kg), nifedipine (5mg/kg) + sertraline (10mg/kg), nifedipine (5mg/kg) + furosemide (10mg/kg) 
respectively. Experiments were done on Day 1 (acute), 15 (subacute) and 31 (subchronic) when drug 
doses were not changed except for furosemide which became 100mg/kg. In the FST and also in the TST, 
results showed that in the test groups, nifedipine potentiated the reduction of the period of immobility 
of imipramine, sertraline and furosemide significantly when subacute values were compared to acute 
values  (F(3, 20) = 15.47, P < 0.05, < 0.01) and when subchronic values were compared to subacute 
values (F(3, 20) = 10.53, P < 0.05, < 0.01). DMR post-hoc test showed the nifedipine + imipramine 
combination as giving the most significant response. In conclusion, results show that subchronic 
nifedipine administration significantly potentiated the reduction of immobility in the FST and TST of 
subchronically-administered imipramine, sertraline and furosemide. 
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INTRODUCTION 
 
Due to the down-stream neuroadaptive changes, 
antidepressants (Ads) currently in use have a delayed 
onset of action. There is a correlation between immediate 
early gene induction such as the activity-regulated 
cytoskeleton associated protein (Arc) expression in 
dendritic spines and the onset of synaptogenesis (Wang 
and Pickel, 2004). There is also now a greater 
appreciation of the convergence of mechanisms between 
stress, depression and factors that determine 
neuroplasticity (Pittenger and Duman, 2008; Racagni and 
Popoli, 2008). In depression, there is reduced level of the 
activity-regulated cytoskeleton associated protein (Arc) 
mRNA (Bramham et al., 2010) and antidepressant drug  
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treatment induces Arc gene expression in the brain (Yang 
et al., 2013; Duman and Li, 2012; Li et al., 2010; Pei et 
al., 2003). Through the upregulation of brain-derived 
neurotrophic factor (BDNF), the selective serotonin 
reuptake inhibitor (SSRI), sertraline which may act as 
selective brain steroidogenic stimulant (SBSS) (Nin et al., 
2011) and imipramine (Chen et al., 2010) enhance 
synaptogenesis. Serotonin 1A receptor-mediated 
iignaling through early signal-regulated kinase (ERK) is 
essential for normal synaptogenesis in neonatal mouse 
hippocampus (Mogha et al., 2012). 

The calcium channel blocker, nifedipine, may enhance 
neuroplasticity through its anti-oxidant actions (Allanone 
et al., 2005; Godfraind et al., 2005; Warner et al., 2004), 
anti-apoptotic effects (Ares et al., 1997), antagonistic 
effect on cytokines (Lu et al., 2008) and anti-excitotoxic 
actions in attenuating the effects of hyperglutamatergic 
excitotoxicity (Paul, 2001). Sustained Ca

2+
  increase gen- 



 
 
 
 
erates reactive oxygen species (ROS) and the formation 
of ROS causes the disruption of Ca

2+
 homeostasis and 

cell death (Manzl et al., 2004). Nifedipine, by its inhibitory 
actions on monoamine transporters (Padmanabhan et al., 
2008; Mogilnicka et al., 1987), GABA (Das et al., 2004), 
adenosine (Bartup et al., 1990) and phosphodiesterase 
(Moore et al., 1985) enhances cAMP-CREB-BDNF 
iiignaling (Sasaki et al., 2007), an important factor in 
neuroplasticity. Nifedipine’s ability to decrease KCC2 
mRNA (Galanopoulou and Moshe, 2003) may contribute 
in preventing falls in long-term potentiation. 

Nifedipine, a protein kinase C (PKC) inhibitor 
(Allanone et al., 2005), may also enhance 
synaptogenesis (Liao et al., 2008) and facilitate long-term 
potentiation (LTP) due to reduction of the Ca

2+
-dependent 

K
+
-mediated after-hyperpolarisation (AHP) (Norris et al., 

1998). It may not affect brain-derived neurotrophic factor-
induced upregulation of the activity-regulated 
cytoskeleton-associated protein (Arc) (Zheng et al., 2009) 
and may lead to decreased activation of mammalian 
target of rapamycin complex1 (mTORC1) (Alexandrescu 
et al., 2010).  

 Accumulating body of evidence implicates the loop 
diuretic, furosemide, as a neurochemical with 
neuroprotective effects that affects neuroplasticity and 
the biomarkers of depression. By its effects on 
monoamine transporters (Lucas et al., 2007), brain iiignal 
angiotensin system (RAS) (Wright et al., 2002), GABA 
(Mantovani et al., 2011), phosphodiesterase (Marcus et 
al., 1978), furosemide may enhance cAMP-CREB-BDNF 
iiignaling. In the peripheral nervous system, the actions of 
furosemide may overlap with that of cAMP (Kreydiyyeh et 
al., 2000). Furosemide’s anti-oxidant actions (Lahet et al., 
2003), its effect on cytokines (Yuengsrigul et al., 1999), 
its attenuation of glutamate-mediated excitotoxicity 
(Sanchez-Gomez et al., 2011) enhance neuroplasticity. 
Its upregulation of brain-derived neurotrophic factor 
(BDNF) (Szekeres et al., 2010) which is deficient in 
depression, its enhancement of long-term potentiation 
(LTP) and neurogenesis being a KCC2 blocker (Wang et 
al., 2006, Roitman et al., 2002) and favourable effects on 
Bcl-2/Bax ratio being a Bax blocker (Lin et al., 2005) 
enhances the neurotrophic signaling cascade of BDNF-
ERK 1/2-CREB-Bcl-2, an important mediator of 
neuroplasticity, which is impaired by stress (Trentani et 
al., 2002). Both furosemide (Liedtke et al., 2011) and 
BDNF (Bramham et al., 2010) may up-regulate the 
immediate early gene, Arc, which enables stable long-
term potentiation and promotes neuronal survival. BDNF 
also induces the mammalian target of rapamycin-
(mTOR)-dependent local activation of translation 
machinery and protein synthesis in neuronal dendrites 
(Takei et al., 2004; Slipczuk et al., 2009). Bramham et al. 
(2010) noted that, unlike Arc, mTOR signaling is 
dispensable for LTP maintenance and for enhanced 
initiation. 

Recently, the induction of salt appetite by furosemide 
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has been reported to activate the endogenous enkephalin 
system (Grondin et al., 2011)  and may activate release 
of  the cocaine-amphetamine regulated transcript (CART) 
peptides that have antidepressant effects (Peizhong, 
2011).  

The aim of the study was to evaluate the effects of 
nifedipine on the antidepressant responses of imipramine 
and sertraline in the TST and FST models of depression 
in mice which has not been reported. 
 
 
MATERIALS AND METHODS 
 
Male albino mice (25g-35g) were used. Groups of mice 
were housed in the departmental laboratory in separate 
labelled metal cages for 30 days.    Animals were housed 
at room temperature of 25º-27ºC in a 12-hour light/dark 
cycle. They were allowed food and water ad libitum, and 
on the day of the test (Days 1, 15 and 31) transported to 
the sound-proof testing area in their own cages. All drugs 
were supplied by Sigma-Aldrich through Rovet 
Chemicals, Benin –City, Nigeria. All the drugs were 
dissolved in 10% Tween 80 in distilled water because of 
furosemide’s solubility. The mice were injected 
intraperitoneally (i.p.). None of the animal groups 
exhibited hyperlocomotion or stereotypy in their home-
cages which is the most basic assessment of locomotion. 
The doses of drugs were chosen from previous studies 
(Lundy et al., 2003; Eraly et al., 2006; Luszczki et al., 
2003; Cryan et al., 2004; Kosuda et al., 1997; Hesdorffer 
et al., 2001; Mogilnicka et al., 1987). 
 
 
Drug studies with the forced swimming test 
 
Male albino mice(25g-35g), after acclimatisation and care 
in the departmental laboratory were transported to the 
sound-proof testing area in their own labelled cages. 
They were allowed to adapt for one hour before the 
intraperitoneal injections after which there was a wait –
period of 60 minutes before the tests of immobility. 

Mice were forced to swim for four minutes in a vertical 
glass cylinder of height 27cm, diameter 16.5cm and 
containing fresh tap water to a depth of 15cm at 27ºC. 
The mice were dried and kept warm after each test 
session. A behavioural model of immobility first 
postulated by Porsolt (Porsolt et al., 1977) and named 
the behavioural despair model  was used. In this model, 
mice are forced to swim in a restricted space from which 
escape is not possible. Following an initial period of 
vigorous activity, the mice become helpless and adopt a 
characteristic immobile posture with no further attempt to 
engage in escape-related behaviour, and this reflects a 
state of despair or lowered mood. The period of on-set of 
immobility is timed by an observer unaware of the drug 
given and recorded. 

In  the  experiment, the control group received 0.25 ml 
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Values are expressed in seconds + SEM (Vertical Bars). The drug combinations prolonged the period of 
onset of immobility significantly when subacute values are compared to  acute values (F (3, 20) = 15.47; 
P < 0.05, < 0.01) and to values obtained with the single drugs;  and when subchronic values are 
compared to subacute values (F(3, 20) = 10.53; P < 0.05, < 0.01). Post-hoc DMR tests showed the 
nifedipine + imipramine (N + I) combination produced the most significant response and the order of 
magnitude of response was N + I > N + S > N + F.  
 

Figure 1. Effect of acute, subacute and subchronic administration of nifedipine + imipramine, nifedipine 
+ sertraline, nifedipine + furosemide on onset of period of immobility in the fst. 

 
 
 
of Tween 80 i.p. daily for 30 days. The second group 
received nifedipine (5mg/kg) + imipramine (10mg/kg) i.p. 
daily for 30 days. The third group received nifedipine 
(5mg/k) + sertraline (5mg/kg) i.p. daily for 30 days and 
the fourth group received nifedipine (5mg/kg) + 
furosemide (10mg/kg) i.p. daily for 30 days. On the test 
days (Days 1, 15 and 31), doses remained unchanged 
except the furosemide dose which was increased to 
100mg/kg. 
 
 
Drug studies with the tail suspension test 
 
Male albino mice weighing 25-35g were used. They were 
housed in the departmental laboratory in labelled metal 
cages for 30 days prior to testing, in a 12-hour light/dark 
cycle with food and water freely available. The mice were 
transported from the housing room to the sound-proof 
testing area in their own cages and allowed to adapt to 
the new environment for one hour before testing. The 
groups of mice were treated with the test compounds by 
intraperitoneal (i.p.) injection one hour prior to the test of 
immobility. In the TST first formulated by Steru in 1985 
(Steru et al., 1985), the mice are suspended on the edge 
of a shelf 58cm above a table-top by adhesive tape 
placed approximately 1cm from the tip of the tail. The 
duration of immobility  is  recorded for a period  of  5 mi- 

nutes by an observer unaware of the test compound. 
In the experiment, the control group received 0.25ml 

of Tween 80 i.p. daily for 30 days. The second group 
received nifedipine  (5mg/kg) + imipramine (10mg/kg) i.p. 
daily for 30 days. The third group received nifedipine 
(5mg/kg) + sertraline (5mg/kg) i.p. daily for 30 days and 
the fourth group received nifedipine (5mg/kg) + 
furosemide (10mg/kg) i.p. daily for 30 days. On the test 
days (Days 1, 15 and 31), doses remained unchanged 
except the furosemide dose which was increased to 
100mg/kg. 
 
 
Statistical analysis 
 
One-way ANOVA was applied followed by DMR as post-
hoc test. Mann-Whitney non-parametric test was used 
when comparing the means of two samples. The 
difference was considered to be significant at P < 0.05, < 
0.01. 
 
 
RESULTS 
 
Acutely in the FST (Figure 1), the nifedipine  (5mg/kg) + 
(imipramine (10mg/kg) combination prolonged the period 
of onset of immobility in the FST to 92.80 ± 1.00 seconds,  
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Figure 2. Effect of acute, subacute and subchronic administration of Nifedipine + Imipramine, Nifedipine + 
Sertraline, Nifedipine + Furosemide on duration of immobility in the TST. 

 
 
 
and this became 136.13 ± 1.61 seconds and 171.45 ± 
2.41 seconds at 15 and 31 days respectively. The 
nifedipine (5mg/kg) + (sertraline (5mg/kg) combination 
gave 90.20 ± 0.90 seconds acutely, 105.00 ± 0.50 
seconds at Day 15 and 119.85 ± 1.47 seconds at Day 31. 
The nifedipine (5mg/kg) + (furosemide (100mg/kg) 
combination gave 79.04±1.02 seconds acutely, 101.14 ± 
3.68 seconds at Day 15 and 114.10 ± 0.63 seconds at 
Day 31. The drug combinations significantly enhanced 
responses when the subacute values are compared to 
the acute values (F(3,20) = 15.47, P < 0.05, < 0.01) and 
to the values obtained with the individual drugs, and 
when subchronic values are compared to subacute 
values (F(3, 20) = 10.53, P < 0.05, < 0.01). Post-hoc 
DMR test showed the nifedipine + imipramine 
combination gave the most significant response. This 
combination displayed synergy because the value at 31 
days was more than the sum of the individual acute 
values. Acutely in the TST (Figure 2), the nifedipine 
(5mg/kg) + imipramine (10mg/kg) combination reduced 
the duration of immobility in the TST to 87.50 ± 4.60 
seconds, and this became 79.31 ± 3.70 seconds and 
74.62 ± 1.04 seconds at 15 and 31 days respectively. 
The nifedipine ([5mg/kg) + sertraline (5mg/kg) 
combination gave 93.17 ± 0.50 seconds acutely, 85.10 ± 
0.50 seconds at Day 15 and 78.16 ± 2.48 seconds at Day 
31. The nifedipine (5mg/kg) + furosemide (100mg/kg) 

combination gave 108.62 ± 5.40 seconds acutely, 101.10 
± 5.79 seconds at Day 15 and 100.10 ± 0.42 seconds at 
Day 31. The drug combinations significantly enhanced 
responses when the subacute values are compared to 
the acute values (F(3, 20) = 18.08, P < 0.05, < 0.01) and 
to the values obtained with the individual drugs, and 
when subchronic values are compared to subacute 
values (F(3, 20) = 26.28, P < 0.05, < 0.01). Post-hoc 
DMR test showed the nifedipine + imipramine 
combination gave the most significant response. The 
order of magnitude of response was nifedipine + 
imipramine > nifedipine + sertraline > nifedipine + 
furosemide. 
 
 
DISCUSSION 
 
The results show that the drug combinations, nifedipine + 
imipramine, nifedipine + sertraline and nifedipine + 
furosemide reduced immobility significantly in the FST 
and TST models of depression in mice,  and their effects 
were enhanced after 15 days and after 31 days (P < 0.05, 
< 0.01). The DMR post-hoc test showed that the 
nifedipine + imipramine combination gave the most 
significant response; and the nifedipine + imipramine 
combination demonstrated synergy while the nifedipine + 
sertraline and nifedipine + furosemide combinations dem- 
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onstrated enhancement after 30 days of treatment. Both 
in the FST and TST, the order of potency was nifedipine 
+ imipramine > nifedipine + sertraline > nifedipine + 
furosemide. 

Calcium channel blockers (CCBs) have anti-
depressant-like properties (Biala, 1998; Mogilnicka et al., 
1987) and its combination with imipramine, sertraline or 
with furosemide may affect more than one signalling 
pathway or affect sequential steps in a pathway to 
produce synergistic effects. We have shown in a 
separate report that while nifedipine mediates 
serotonergic signalling as previously reported (Tazi et al., 
1992), furosemide mediates noradrenergic signalling and 
these two signalling pathways could synergise as 
happened in our experiments.  

Why nifedipine + imipramine combination is more 
efficacious than nifedipine + sertraline combination is not 
readily explainable but it may involve interaction at the 
reuptake sites and relative effect on calcium currents. 
Nifedipine acts on the cell membrane to block the 
movements of calcium through the voltage-dependent 
and receptor –operated calcium channels involved in 
glutamate-mediated excitotoxicity (Griffiths et al., 1998; 
Lerea et al., 1992; Nakatsu et al., 2006; Orallo et al., 
1991) while imipramine also has the same effect by 
inhibiting the influx of calcium through both the receptor- 
operated and voltage-gated calcium channels (Shim et 
al., 1999). Griffiths et al. (1998) had shown that, following 
exposure to excitotoxic doses of glutamate, calcium influx 
via L-type voltage sensitive calcium channels (VSCC) 
specifically maintain the excitotoxicity.  So it is not 
surprising if nifedipine + imipramine combination 
synergises as happened in our experiments.  Other 
investigators (Geoffrey et al., 1988; Rehavi et al., 1988; 
Joshi et al., 1999) have shown evidence for a likely 
nifedipine + imipramine potentiation.  Joshi et al. (1999) 
showed evidence that low concentrations of CCBs inhibit 
calcium signalling paradoxically. Our experiments still 
showed some potentiation of sertraline by nifedipine and 
this may further be explained by the fact that 5HTIA 
agonists such as sertraline act through 5HT1A receptors 
to reduce voltage-activated Ca

2+
 signals (Ladewig et al., 

2004) or blockade of reuptake of serotonin by nifedipine 
could further result in enhancement (Wendling et al., 
1987). Also, the other down-stream effects of imipramine 
and sertraline to enhance neurotrophic signalling 
cascades may also lead to synergism with nifedipine.  
The fact that furosemide inhibits GABA-induced Ca

2+
 

accumulation (Ikeda et al., 1977; Takebayashi et al., 
1996) and glutamate-mediated Ca

2+
 accumulation 

(Sanchez-Gomez et al., 2011) may account for its 
potentiation by nifedipine as shown by the experimental 
results. Chronic application of furosemide may lead to 
hyperphosphorylation of the L-type calcium channel 
resulting in inefficient calcium cycling (McCurley et al., 
2004). 

Nifedipine may act independent of calcium channels to 

   
 
 
 
inhibit PKC (Hempel et al., 1999). Nifedipine’s PKC 
inhibitory effect may antagonise the apoptotic effects of 
protein kinase Cδ (PKC delta) and protein kinase Cζ 
(PKC zeta) (Gonzalez-Guerrico et al., 2005; Peng et al., 
2011). PKC delta is activated in various cell types by 
oxidative stress (Talior et al., 2003).  Desipramine, the 
metabolite of imipramine, which inhibits PKC (Mann et 
al., 1995) may enhance this anti-apoptotic effect of 
nifedipine; and this may also help explain present results. 

Further avenues for interaction between nifedipine and 
furosemide exist. Chronic application of furosemide also 
affect the monoamine transporters (Habecker et al., 
2003; Lucas et al., 2007) and both furosemide and 
nifedipine antagonise oxidants, adenosine and 
phosphodiesterase which may help explain our 
experimental results. 

In conclusion, the drug combinations nifedipine + 
imipramine, nifedipine + sertraline and nifedipine + 
furosemide show enhanced actions on chronic 
administration in the FST and TST models of depression 
in mice. 
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