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Opinion

INTRODUCTION
Next-generation sequencing (NGS) technology offers a 
great opportunity to revolutionise a wide range of medical 
and biological research as well as their induced application 
fields, such as medical diagnosis, biotechnologies, virology, 
etc. (Alic et al., 2016). This is because NGS technology 
has an ever-increasing high throughput and dramatically 
decreasing cost. The sequences are not flawless, and there 
are a variety of errors present, including substitutions, 
insertions, deletions, and uncalled bases. For example, 
substitution error rates range from 1% to 2.5%, and insertion 
and deletion error rates can reach 40% (Kelley et al., 2010). 
The sequencing flaws in the data have made data analysis 
very difficult. So, the first and most important task is to fix 
these mistakes. a lot of downstream applications Corrected 
sequencing reads can be useful for many downstream 
applications, including sequence assembly, variant calling, 
read mapping, etc. (Salmela et al., 2011). Numerous 
strategies have been put out to fix faults, just a few of them 
are Coral, BLESS (Heo et al., 2014), and MEC (Zhao et al., 
2017). These strategies strongly rely on k-mer.

K consecutive nucleotides make up a k-mer, which is a 
substring of a sequencing read. Mining of solid kmers is 
typically the first and most important phase in a k-mer-
based technique. When a k-frequency mer's exceeds a 
certain minimal threshold, it is said to be solid, whereas 
the others are weak. This straightforward description 
successfully helps to distinguish between strong and weak 
k-mers, although it still has clear limits.

The main flaw is that a k-mer with a low frequency could not 
actually be weak. This is because system biases, such as the 
difficulty of sequencing sections with high GC concentration, 
lead the distribution of sequencing depth to be uneven. 
In order to do this, we concentrate on the significant yet 

understudied topic of refining solid k-mers utilizing.

Our model divides all k-mers into solid and liquid k-mers 
after counting k-mers using KMC2  depending on their 
frequency, provisionally set to be weak. At a later time, 
each k-and merits, the z-score and other factors are used to 
determine solidity jointly its frequency.

CONCLUSION
An essential component of many sequencing analyses, a 
k-mer is especially helpful for error correction, sequence 
assembly, variant calling, etc. K-mers are the cornerstone 
of several NGS applications. However, k-mers are prone 
to errors, which presents significant difficulties for further 
data processing. We provide a statistical method for clearly 
separating strong kmers from weak k-mers. For each k-mer, 
we precisely calculate a z-score, and using the z-score and 
frequency, we jointly decide if the k-mer is indeed solid. 
Studies reveal that our method successfully identifies solid 
kmers with low frequency.

A k-mer with a low frequency, however, may not be 
inaccurate due to bias and sequencing mistakes. Therefore, 
it is not ideal to discriminate solid k-mers just by frequency. 
We suggest a unique strategy of using z-score to identify 
incorrectly categorised weak and solid kmers in order to 
address this issue rather than ignoring it by existing ways. 
Research demonstrates that the z-score may be used to 
discriminate between genuine solid k-mers. 
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