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Abstract 
 

A catalogue of evidence shows that the cardiometabolic disorders of diabetes mellitus and 
hypertension are related to other age-related diseases which shorten life. Data also mount that they are 
linked to environmental factors inducing alterations in genetic and epigenetic mechanisms, for 
example, telomerase expression. Calorie restriction and the biguanide metformin have been acquitted 
as plausible agents for extending health span and lifespan for they suppress age-related disorders. 
Their mode of action appear to converge on AMPK, micro RNAs and purinergic mechanisms and, 
through these, modulation of matrix metalloproteinases and its down-stream target, glycogen synthase 
kinase-3 β. A retrospective report also shows that metformin and calorie restriction more effectively 
suppress deterioration in cardiac function compared to other hypoglycaemic agents such as insulin 
and sulphonylureas in a Nigerian population. More research is needed to discover agents that may 
possess the pharmacologic actions of metformin, to further elucidate the mechanisms of action of 
metformin and calorie restriction and whether and how their beneficial effects hold fort in all races and 
in all climes. 
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OVERVIEW  
 
The rising burden of diabetes mellitus and 
hypertension 
 
Type 2 diabetes mellitus and hypertension have emerged 
as major medical and public health issues worldwide 
(Kings and Rewers, 1991). Type 2 diabetes mellitus is 
increasing in epidemic proportions globally. According to 
WHO, the prevalence of diabetes mellitus in adults 
worldwide was estimated to be 4.0% in 1995 and is 
predicted to rise to 5.4% by the year 2025, an estimate 
that might have already been exceeded.  In 2010, the 
estimate of presenting diabetes was 6.4% of the global 
adult population, that is, 285 million (Bruce, 2014). 
 

Diabetes and hypertension reduce quality of life 
 
Additionally, hypertension affects one billion people 
worldwide and it is estimated that by 2025, up to 1.56 
billion adults worldwide will be hypertensive.Diabetes and 
hypertension exert a significant burden resulting in 
increased morbidity and mortality (Moller, 2001), 
decreased life expectancy and reduced quality of life. For 
example, according to WHO, the life expectancy of 
Nigerians  fell from 51-56 years in 2000 to 47.56 years in 
2011 due to the epidemic of the metabolic or insulin 
resistance syndrome (Mohan et al, 2013; Awosan et al, 
2013;  Udenze  et  al,  2013). Metabolic  syndrome   is   a  
 



 
 
 
 
cluster of cardiometabolic risk factors which include 
insulin resistance, prediabetes, type 2 diabetes mellitus, 
central obesity, dyslipidaemia, hypertension, 
atherosclerotic cardiovascular disease and 
microalbuminuria (WHO, 1999; Alberti et al, 2005). 
 
 
Diabetes mellitus disrupts homeostasis and increase 
risk of age-related diseases 
 
Age-related diseases include cognitive impairment 
occasioned or exacerbated by diabetes; stroke and 
neurodegenerative diseases;  glaucoma- and macular 
degeneration-induced falls secondary to diabetes and 
hypertension;  immune dysfunction, atherosclerosis,  
coronary heart disease, cancer, prostate enlargement, 
osteoporosis-induced fractures, all resulting in frailty and 
faulty physiological response to stressors; and 
constipation/incontinence. Diabetes mellitus may be at 
the epicentre in the causation of most of these illnesses 
which decrease healthspan and lifespan because it 
particularly disruptsthe ‘fixity’ of the milieu interieur or 
internal environment which according to Claude Bernard 
is the condition (or pre-requisite) of a free, independent 
life (Holmes, 1986; Gross, 1998) and, pari passu, the 
balance in the functions of the nervous, immune and 
cardiovascular systems. While the possible mediators of 
this association, such as polymorphism in the matrix 
metalloproteinase-9 (MMP9) gene (Rybakowski, 2009) 
and microRNA-regulated pathways (Hebert, 2009) are 
being unravelled, metformin and calorie restriction, at 
present, may be in the forefront in the prevention of these 
age-related illnesses (Blagosklonny, 2009). 
 
 
The influence of environmental factors 
 
Environmental factors (Liu et al, 2008), particularly diet 
and sedentary lifestyles, have major roles in diabetes risk 
by accelerating prevalence of early onset pre-diabetes 
and type 2 diabetes mellitus. The common forms of 
diabetes mellitus present multifactorial aetiologies with 
involvement of intricate interactions of genetic, epigenetic 
and environmental attributes (Chukwuma, 2014). 
 
 
Genetic and epigenetic implication 
 
DNA methylation and histone modifications are two of the 
chromatin remodelling processes which help in the 
integration of environmental signals for optimal genomic 
output (Liu et al, 2008). Aberrations in chromatin 
remodelling are associated with both genetically and 
environmentally-related diseases such as cancer and 
type 2 diabetes mellitus. DNA methylation of certain 
genes has been found to be important in type 2 diabetes 
mellitus (Carless et al, 2013); to mediate persistent  
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epileptiform activity in vitro and in vivo (Machnes et al, 
2013); and also implicated in bipolar disorder (Ikegame et 
al, 2013). Obesity caused by high-fat diet increases DNA 
methylation at the leptin promoter in rat adipocytes 
(Kalliman and Parrizas, 2011). Diabetes mellitus and a 
hyperactive mTOR signalling increase generation of ROS 
which may cause genetic mutation by damaging DNA 
and mitochondria (Potter et al, 2010; Robertson et al, 
2004; Zhang, H (Sfrbm.org). CR (Olivo-Marston et al, 
2014) and metformin (Paulito et al, 2013) modulate 
microRNAs (MiR-122, MiR-33 and MiR-200) involved in 
cholesterol metabolism and cancer growth. 
 
 
Telomere and ageing 
 
Attrition in telomere length may be the main determinant 
of human ageing and in this regard diabetes mellitus has 
a significant role to play in causing telomere attrition and 
decreasing lifespan and healthspan. White blood cells 
telomere length is shorter in males with type 2 diabetes 
mellitus and microalbuminuria (Tentolouris et al, 2007). 
High-glucose-induced DNA degradation, mitochondrial 
oxidative degradation and protein glycation resulting in 
the formation of advanced glycation end-products (AGEs) 
augment telomere attrition and this can be prevented by 
metformin and calorie restriction (CR). The molecular 
mechanisms involved in the premature senescence 
associated with hyperglycaemia include oxidative stress, 
decreased mitochondrial and nuclear DNA repair 
capacity, and protein glycation through the Maillard’s 
reaction and Amadori re-arrangement resulting in the 
formation of advanced glycosylation end products such 
as the dicarbonyl methylglyoxal (Del Nogal-Avila et al, 
2013). Plasma methylglyoxal levels, a major precursor of 
advanced glycation end-products, are increased in 
hypertension and diabetes mellitus and is related to 
upregulation of the renin-angiotensin-aldostrone (RAA) 
system (Dhar et al, 2013) which may enhance telomere 
attrition. Diabetes mellitus is a disease characterised by 
accelerated chemical ageing of long-lived tissue proteins 
(Dyer et al, 1993). These molecular mechanisms lead to 
the telomeres gradually decreasing in length (telomere 
attrition) culminating in cellular senescence (Von 
Zglinicki, 2001; Mayer et al, 2006). 
 
 
Calorie restriction 
 
Calorie restriction (CR) is the moderate reduction of 
about 20-40% in calorie intake compared with ad libitum 
feeding without compromising the basic nutritional needs 
(Blagosklonny, 2009; Canto and Auwerx, 2011). It is the 
most consistent intervention increasing lifespan. It 
protects against the deterioration in biological function 
and reducing the risk factor for diabetes-associated 
cardiovascular disease and cancer. 
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AMPK is a key sensor and effector of the molecular 
effects of calorie restriction and metformin 
 
The serine/threonine kinase, 5’-adenosine 
monophosphate activated protein kinase (AMPK) is the 
key energy sensor with the ability to transcriptionally 
reprogram the cell and metabolically adapt to external 
cues. It is activated upon an increase in AMP/ATP ratio. 
AMPK acts as important mediator of the beneficial effects 
of CR (Canto and Auwerx, 2011) and of metformin, leptin, 
adiponectin, adenosine, adenine nucleotides and ghrelin 
that regulate energy expenditure and food intake (Towler 
and Hardie, 2007). Adenosine nucleotide biosynthesis 
and AMPK regulate lifespan and mediate the longevity 
benefit of calorie restriction (Stenesen et al, 2013). 
 
Insulin sensitivity and AMPK signalling decrease with 
ageing 
 
The responsiveness of AMPK signalling and insulin 
sensitivity decline with ageing (Salminen and Kaamiranta, 
2012; Escriva et al, 2007).This increases oxidative stress 
and reduces autophagic clearance. There is then 
activation of innate immunity defence, triggering low-
grade inflammation and metabolic disorders. 
 
The actions of calorie restriction and metformin 
converge 
 
The actions of CR and the synthetic biguanide metformin 
appear to converge. Both increase mitochondrial 
biogenesis crucial for a healthy cellular and whole-body 
ageing (Martin-Montalvo et al, 2013; Canto andAuwerx, 
2011); reduce MMP-2 activity and retards age-associated 
aortic restructuring in rats (Wang et al, 2006); down-
regulate increased susceptibility of aging kidney to 
ischaemic injury by inhibiting MMP-7 gene (Chen et al, 
2007), counter the age-related decline in ischaemic 
tolerance (Peart et al, 2012) and  antagonise MMP-2-
mediated augmentation of GSK-3 beta kinase activity 
which may contribute to cardiac injury resulting from 
enhanced oxidative stress (Kandasamy and Schulz, 
2009). GSK-3 beta also mediates high-glucose-induced 
ubiquitination and proteasome degradation of insulin 
receptor substrate I (Leng et al, 2010) and its levels 
strongly correlates with increased gamma-secretase 
activity in the brain (Ho et al, 2004). Thus both metformin 
and calorie restriction enhance insulin signalling and may 
be beneficial in the prevention of Alzheimer’s disease due 
to diet-induced amyloidosis (Ho et al, 2004) 
 
Metformin has calorie restriction-mimetic effectsto 
attenuate augmented telomere attrition occasioned 
by high-glucose induction 
 
Metformin has calorie restriction-mimetic effects (Martin-
Montalvo    et    al,   2013),    suppresses    memory    of  

 
 
 
 
hyperglycaemia stress (Zheng et al, 2012) via Sirtuin I 
(silent information regulator) activation and prevents 
progression of impaired fasting plasma glucose (Oriaifo 
et al, 2013). Metformin stands to potentiate the effect of 
calorie restriction in the management of diabetes mellitus 
where the activity of FOXO3a is reduced. Calorie 
restriction with weight loss increases insulin sensitivity by 
activating FOXO3a, a key regulator of insulin and IGF-I 
signalling (Qin et al, 2006). Independently, calorie 
restriction induces SIRT I activation. Metformin also 
suppresses hepatic gluconeogenesis and modulates 
hyperglycaemia-induced endothelial senescence and 
apoptosis through induction of SIRT I (Caton et al, 2010; 
Arunachalam et al, 2014). 
     Thus, metformin and calorie restriction, alone or in 
combination, attenuate telomere erosion associated with 
ageing (Vera et al, 2013), and may synergise with 
telomerase in promoting  longevity (Anisimov et al, 2005; 
Everitt and Le Couteur, 2007; Wang et al, 2015). The 
calorie restriction regimen practised in our clinics to 
improve cardiometabolic health include reducing calorie 
intake by reductions in carbohydrate, meat, oil, salt and 
sugar in-take (C.MOSS) and increase of in-take of fruits 
and vegetables, legumes, unsaturated oils such as soya 
bean oil, water, decrease in periods of non-activity by 
increasing exercise and leading a regulated life free of 
alcohol and drugs (FLOWER). A tilt of the ratio of 
C.MOSS/FLOWER towards C.MOSS or a decrease in 
the FLOWER items of diet may increase cardiometabolic 
risk. ‘Moss’ literally means stagnation and relative 
exaggeration of MOSS items in foods, especially from 
obesogenic centres, poses increased risk for stagnation 
(clog) in the circulation. Metformin has been shown to 
recover pancreatic β-cell cell dysfunction and death due 
to endoplasmic reticulum stress (Jung et al, 2012; 
Cheang et al, 2014) which may be exacerbated by 
ageing (Naidoo et al, 2014). Although the adaptations to 
calorie restriction (CR) may involve reductions in post-
priandal GLP-I concentrations, CR + exercise have 
additive beneficial effects on glucoregulation and insulin 
sensitivity (Weiss et al, 2015).  Metformin’s upregulation 
of GLP-I, the incretin of major importance, which 
enhances pancreatic beta-cell neogenesis like GLP-I 
(Verspohl, 2012; DeFronzo et al, 2014) and which does 
not cause weight gain unlike insulin, the sulphonylureas 
or thiazolinediones, makes metformin + CR + exercise 
training, at present, pivotal or optimal in preventing 
progression of prediabetes to type 2 diabetes. The 
regimen of low-dose metformin (500 mg daily) and calorie 
restriction has been found to be beneficial in one cohort 
of patients with impaired fasting plasma glucose. 
 
Metformin and CR restore leptin sensitivity and 
increase a diponectin levels occasioned by insulin 
resistance 
 
There  is  hypoadiponectinaemia   in    insulin   resistance  



 
 
 
 
which is corrected by chronic metformin therapy and by 
food restriction (Adamia et al, 2007; Escriva et al, 2007). 
The levels of adiponectin decreases with obesity or food 
addiction (Barry et al, 2009) while that of leptin increases 
(Putz et al, 2004) and these aberrations increase 
cardiovascular risk (Im et al, 2006; Koh et al, 2008) and 
hepatic fibrosis (Tsochatzis et al, 2006).Hyperleptinaemia 
impairs insulin signalling (Perez et al, 2004) and predicts 
acute cardiovascular events by exerting actions that are 
potentially atherogenic, thrombotic and angiogenic. It 
stimulates production of pro-inflammatory cytokines and 
increase reactive oxygen species (ROS) and sympathetic 
activity, an independent predictor of diabetes mellitus 
(Koh et al, 2008). The increased plasma levels of leptin 
and C-reactive protein (CRP) in obesity increase 
cardiovascular risk and CRP may bind leptin extra-
cellularly thus impairing its activity and creating insulin 
resistance (Hribal et al, 2014). Metformin decreases CRP 
levels (Oriaifo et al, 2013) andboth metformin and CR 
restore leptin sensitivity in rodents with high-fat-induced 
insulin resistance (Kim et al, 2006; Wilsley and Scarpace, 
2004; Escriva et al, 2007). 
 
 
Metformin and CR Decrease Age-Related Increased 
Risk of Cardiomyo-Vasculopathies. 
 
The cardiovascular diseases of hypertension, coronary 
heart disease, peripheral artery disease, atherosclerosis 
and stroke increase risk for premature senescence 
(Blagosklonny, 2009; Nicolli and Partridge, 2012) and are 
accelerated by diabetes. 

Circulating endothelial progenitor cells are reduced in 
peripheral vascular complications of type 2 diabetes 
mellitus (Fadini et al, 2005). Metformin modulates 
hyperglycaemia-induced endothelial senescence and 
apoptosis through SIRT I (Arunachalam et al, 2014) and 
increases endothelial progenitor cells (EPCs) in diabetic 
mellitus (Liao et al, 2010). It may also activate cardiac 
progenitor cells. Metformin and CR possess anti-
hypertensive (Bhalla et al, 1996) and sympathoinhibitory 
effects. 

Through their activation of AMPK and inhibition of 
glycogen synthase kinase 3 beta (GSK-3 beta), 
metformin and CR stand in good stead as a therapeutic 
agent for atherosclerosis (Motoshima et al, 2006; 
McAlpine et al, 2012); and could also help in 
thromboembolism through suppression of matrix 
metalloproteinase-9 (MMP-9) and -2 (Morizane et al, 
2011). In fructose-induced insulin resistant rats, Lu et al 
(2013) showed that metformin prevented neo-intima 
formation and enhanced methacholine - induced 
relaxation whilst decreasing phenylephrine-induced 
vasoconstriction. It was also shown to decrease vascular 
smooth muscle cell (VSMC) proliferation, migration and 
inflammation. 
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Metformin and CR arecardioprotectives 
 
Metformin limits cardiac infarct size and remodelling (El-
Messaoudi et al, 2011); and AMPK activation by 
metformin or CR is a preventive therapeutic target in the 
transition from cardiac injury to heart failure (Beauloye et 
al, 2011; Fu et al, 2011). K (ATP) activation by metformin 
coupled with its inhibition of MMP-9 could attenuate left 
ventricular dilatation in the infarcted heart (Gao et al, 
2009; Creemers et al, 2001). Metformin through the 
Silent Information Regulator (SIRT I) regulates Protein 
Kinase B (Akt) implicated in modulating cardiac 
hypertrophy and ageing (Pillai et al, 2014). 

Diabetes causes bone marrow autonomic neuropathy 
and impairs stem cell mobilisation (Albiero et al, 2014) 
which may be modulated by metformin and CR. 
Restoration of cardiac progenitor cells after myocardial 
infarction is by self-proliferation and selective homing of 
bone marrow-derived stem cells (Mouquet et al, 2005). 
Soluble factors released by endothelial progenitor cells 
promote migration of endothelial cells and cardiac 
resident progenitor cells (Urbich et al, 2006).  

Proviral Insertion Site for Moloney Murine Leukaemia 
Virus-I (Pim-I), a critical participant in Akt-mediated 
cardioprotection (Sussman, 2009), is a close homologous 
gene to Pim-2 (van der Lugt et al, 1995) which is known 
to be upregulated by metformin (Leclerc et al, 2013). 
Metformin’s and CR induction of the anti-oxidant 
hemeoxygenase-I (HO-I) or heat-shock protein-32 (Liu et 
al, 2011) could off-set effects of polymorphisms in the 
detoxification enzymes, quinoneoxido-reductase (NQOI), 
glutathione-S-transferase theta (GSTT) and glutathione-
S-transferaseMμ (GSTM) genes which are associated 
with coronary heart disease (CHD) (Martin et al, 2009) in 
patients with type 2 diabetes mellitus. 
 
 
Cognitive decline and Neurodegeneration 
 
Cognitive decline and neurodegeneration are frequently 
age-related disorders (Blagosklonny, 2009) in tandem 
with the fact that obesity and diabetes are associated 
with cognitive impairment and early neurodegeneration 
(Kim et al, 2011) 
Brain insulin resistance is an early and common feature 
of Alzheimer’s disease (Talbot et al, 2012) and is 
associated with IGF-I resistance, insulin receptor 
substrate-I (IRS-I) dysregulation and cognitive decline. 
Alzheimer’s disease shows many age-related 
pathophysiological features of type 2 diabetes mellitus 
which include insulin resistance, disrupted glucose 
metabolism in non-neuronal tissues, peripheral oxidative 
and inflammatory stress, amyloid aggregation, neural 
atrophy and cognitive decline. Advanced Maillard’s 
reaction end-products are associated with Alzheimer’s 
disease  and ageing pathology (Smith et al, 1994; Dyer et  
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al, 1993). Alzheimer’s disease may now be termed type 3 
diabetes mellitus (de la Monte, 2012; Yanev et al, 2013; 
Chaldakov et al, 2014;Chaldakov et al, 2009; Manev, 
2009). Additionally, hypoxia-dependent amyloidogenesis, 
a sequelae of hypertension, could lead to Alzheimer’s 
disease, creating the cerebrovascular-Alzheimer’s 
disease spectrum that may be responsive to some anti-
hypertensives that have neuroprotective effects (Jin et al, 
2014; Valenzuela et al, 2012; Alexander et al, 2011; 
Wang et al, 2007). 
 
 
CR and metformin possess anti-hypertensive effects 
 
CR (Dolinsky et al, 2010; Young et al, 1978) and 
metformin (Muntzel et al, 1999) possess anti-
hypertensive effects. Together with their neuroprotective 
effects and actions against insulin resistance, their 
deployment in diabetes mellitus and co-occurring 
hypertension treatment may be indispensable. 
 
 
Both CR and metformin display anti-depressant 
effects 
 
Chronic metformin administration display anti-depressant 
effects which is enhanced by CR and by the recognised 
anti-hypertensive, valsartan (Oriaifo and Omogbai, To Be 
Published). Both metformin through AMPK activation and 
CR may enhance serotonin, orexin, endorphin and 
neurotrophic signalling (Zhang et al, 2015; Lim et al, 
2010; Tsuneki et al, 2013; Ou et al, 2006; Satoh et al, 
2010) for their anti-depressant-like effects which reinforce 
the will for life amongst diabetics. 
 
 
CR and metformin show benefit in Alzheimer’s 
disease 
 
The energy sensor, AMPK, when activated by insulin 
sensitizers such as metformin + exenatide (Li, 2007) or 
calorie restriction (Ho et al, 2004) reduce oxidative stress, 
improves mitochondrial dysfunction, improves glucose 
uptake in Alzheimer’s disease (AD) and slows down the 
main amyloidogenic protein, Aβ, accumulation 
extracellularly and intracellularly or tau hyper- 
phosphorylation intracellularly (Kim et al, 2011) to reduce 
the memory impairment in the disease (Kim et al, 
2013).Whitmer (2013) has reported that metformin cuts 
AD-linked dementia rates more than insulin, 
thiazolidinediones or sulphonylureas. Moreover, the initial 
report by Chen et al (2009) has also been straightened 
by recent investigations by Hettich et al (2014) who 
showed that the biguanide, metformin, reduces β-site 
amyloid precursor protein cleaving enzyme-I(BACEI) 
levels making it of value in treating or preventing AD. 
Metformin decreases neuronal  insulin  resistance  and  is  

 
 
 
 
associated with neurogenesis (Wang et al, 2012). It also 
protects against vascular dementia. Metformin, not 
rosiglitazone, attenuates the increasing plasma levels of 
the new cardiovascular/bipolar disorder I marker, fibulin-I 
(Skov et al, 2014; Greenwood et al, 2012). 

Network analysis of neurodegenerative diseases 
highlights a role of Toll-like receptor signalling (Nguyen et 
al, 2014) which metformin and CR suppress acutely and 
chronically (Soraya et al, 2014; Sun et al, 2007). 
Reduced cell proliferation and neuroblast differentiation in 
the dentate gyrus of lipotoxic mice are ameliorated by 
metformin (Yoo et al, 2011) which promotes 
neurogenesis and spatial memory formation (Potts and 
Lim, 2012; Aravi et al, 2008; Zhang et al, 2011). 
 
 
Molecular effects of metformin in neurogenesis 
 
Metformin’s and CR’s upregulation of BDNF upregulates 
neurogenesis by enhancing the activities of neurotrophic 
factors such as basic fibroblast growth factor-2 (Lamba et 
al, 2008). Metformin activates an atypical protein kinase 
C-(PKC)-cAMP response element binding protein (CBP) 
pathway to promote neurogenesis (Wang et al, 2012). It 
also promotes epidermal growth factor-induced 
proliferation and migration of human fetal neural 
stem/progenitor cells with the PIK3/Akt pathway (Zhang 
et al, 2011; Menendez and Vazquez-Martin, 2012)). 
Metformin also enhances BDNF-neuropeptide Y (NPY) 
signalling which decreases excitability and neuro-
apoptosis (Silva et al, 2007). 
 
 
CR and metformin attenuate inflammatory cytokines 
and are beneficial in epilepsy 
 
CR and K(ATP) channel openers increase seizure 
threshold (Greene et al, 2001; Ghasemi et al, 2010) while 
metformin has been demonstrated to reduce 
epileptogenesis (Zhao et al, 2014) and experimentally-
induced epilepsy in our laboratory. Epilepsy and bipolar 
disorder have overlapping aetiopathogenic factors 
(Kanner et al, 2014).Pathological behaviours, such as 
epilepsy, hypersexuality, hyperlocomotion and 
aggression, may be mediated by dopamine D3/2 
receptors (Kelly et al, 2012), signalling through GSK-3 
beta (Li and Gao, 2011) in a hyperdopaminergic state.  

Animal models support a potential role of pathogenic 
mechanisms of mood disorders in the development of 
epileptic seizures and epileptogenesis. A common 
mechanism may be their anti-inflammatory and MMP-9 
inhibitory effects important in the aetiopathogenesis of 
epilepsy and bipolar disorder. MMP-9 which signals 
through GSK-3 beta decreases seizure threshold 
(Wilcynski et al, 2008). Importantly, chronic epilepsy may 
increase cardiometabolic risk (Katsiki et al, 2014) related 
to   the  pharmacoresistance   in   epilepsy.  Inflammatory  



 
 
 
 
cytokines in infection, inflammation, stress and 
neurodegeneration couple hyperexcitability and seizures 
(Vezzani et al, 2011) and both metformin and CR 
decrease chemoattractant cytokine signalling in adipose 
tissue of obese animals (Wasinski et al, 2013; Yung et al, 
2007) and IL-I betahyperresponsiveness in aged animals 
(Rutkute et al, 2007; Hattori et al, 2006; Liu et al, 2011). 

Preliminary results from our laboratory reveal that 
metformin and CR attenuate some facets of bipolar 
disorder such as aggression and hypersexuality partly 
through upregulation of central serotonergic signalling 
(Schweiger et al, 1989; Aravi et al, 2008; Marson and 
McKenna, 1992). 
 
 
Improvement of functional recovery following stroke 
 
Chronic metformin treatment may improve functional 
recovery following stroke, evident from limited 
observational studies in a small cohort. Metformin is 
associated with increased angiogenesis and 
neurogenesis following experimental stroke (Jin et al, 
2014) partly through increasing neurotrophic support by 
upregulation of brain-derived neurotrophic factor (Paintlia 
et al, 2013), ATP P2X7 (Neary and Kang, 2006) 
purinergic signalling and induction of autophagy (Dong et 
al, 2013). It also inhibits class II histone deacetylase 
(Mihaylova et al, 2011) and mTOR; and dampens 
hyperglutamatergic signalling to prevent excitotoxicity 
(Kim et al, 2013; Shen et al, 2014). CR prevents stroke 
and improves functional outcome after stroke through 
increasing neurotrophic support and dampening 
inflammatory pathways as does metformin (Manzanero et 
al, 2011; Arumugam et al, 2010). 
 
 
Metformin and CR enhance immune function via 
AMPK 
 
The dysregulated immune function especially in aged and 
high-fat-fed animals are normalised by metformin and 
CR. Metformin increases extra-cellular ATP concentration 
and the ATP P2YI purinergic G-protein coupled receptor 
may be central in autocrine stimulation of the human 
pancreatic β-cells (Tengholm, 2014). It also increases 
levels of adenosine which increases phagocytosis of S. 
aureus by endothelial cells via increase in cAMP levels 
(Ryan et al, 1969). 

ATP, which stimulates human macrophages to kill 
intracellular virulent Mycobacterium tuberculosis via 
calcium-dependent phagosome-lysosome fusion, acts as 
a competitive antagonist of NMDA receptors at low 
glutamate concentrations and a positive allosteric 
modulator at high glutamate concentrations engendered 
by infections (Ortinau et al, 2003; Kloda et al, 2004). 
Thus, in this setting the ATP P2X7 purinergi receptor may  
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lead to decrease in synaptic strength and 
neurodegeneration. 

Activation of AMPK by metformin enhances neutrophil 
chemotaxis and bacterial killing (Park et al, 2013). This 
means that the biguanide, metformin, may facilitate 
bacterial eradication in sepsis. 

There is a functional role of leptin in enhancing Th I 
(cell-mediated) lymphocyte functions and there is an 
impaired T cell immunity in mice deficient in leptin or its 
receptor (Martin-Romero et al, 2000; Lord et al, 1998). 
Thus leptin resistance in obesity and diabetes impairs T 
cell-based immunity, and this can be rescued by 
metformin and calorie restriction which improve leptin 
sensitivity. Leptin sensitivity helps T cells upregulate 
glucose uptake and metabolism (Saucillo et al, 2014). 
Metformin’s activation of AMPK increases Treg 
(Regulatory T cells) differentiation in vitro and in 
vivowhich inhibit elements of the metabolic syndrome 
(Feuerer et al, 2009). These Treg cells which are CD4(+) 
Foxp3(+) regulatory cells are reduced in insulin 
resistance. Metformin is also reported to be important for 
memory CD8(+) T-cell differentiation (Araki and Ahmed, 
2013), controlling T-cell metabolism and determining the 
effector versus memory fate of CD8(+) T-cells (Finlay and 
Cantrell, 2011) 

AMPK is a likely component of the intrinsic innate 
immune response against RNA viruses and may provide 
a target for broadly anti-viral therapeutics (Moser, 2011). 

In the same vein, CR increases CD4(+) T-cell/CD8(+) 
T-cell ratio and decreases monocyte recruitment to 
adipose tissue in order to attenuate expression of 
inflammatory cytokines (Wasinski et al, 2013). 
 
 
Dysregulated matrix metalloproteinase signalling in 
diabetes mellitus 
 
The dysregulation of secretion of matrix 
metalloproteinases (MMPs) contribute to numerous 
disease processes, ranging from cancer primary tumor 
growth, invasion and metastasis to microbial infection, 
the mediation of tissue destruction in degenerative and 
inflammatory diseases; and thromboembolism (Gebbia et 
al, 2004; Rundhang, 2003;Baroncini et al, 2011). MMP- 2 
inhibition may prevent platelet activation in thrombus 
formation (Momi et al, 2009). MMPs are now known to be 
at the intersection of the pathways regulating 
cardiometabolic diseases, neuropsychiatric diseases and 
cancer (Rybakowski, 2009). 

The neuroadipokine, leptin, increases MMP-2, MMP-9 
and tissue inhibitor of metalloproteinase (TIMP). It is also 
mitogenic for vascular endothelial cells and induces 
angiogenesis (Park et al, 2001). This role of leptin may 
be especially important in the setting of the metabolic 
syndrome when there is leptin resistance. Reactive 
oxygen  species  (ROS)  (Nelson  and  Melendez,  2004);  
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nuclear factor-kappaβ (Chou et al, 2010); the nuclear 
transcription factor and cytokine activator which triggers 
inflammatory cascades, high mobility group box I (HMGB 
I) (Lee et al, 2015); interleukin-I beta (Liang et al, 2007) 
and Toll-like receptors (Paolillo et al, 2012) induce MMP 
expression. 
 
 
Beneficial role of CR and  metformin in MMP 
overexpression, cancer and gerosuppression 
 
Calorie-restriction and metformin which restore leptin 
sensitivity inhibits the activity of MMPs in causing 
angiogenesis,  proliferation and migration of human 
umbilical endothelial cells (Wilsley and Scarpace, 2004; 
Esfahanian et al, 2012; Soraya et al, 2012).Calorie 
restriction in rodents (Fontana et al, 2008); protein 
restriction in humans (Levine et al, 20140) and metformin 
down-regulate the insulin/IGF-I signalling pathway to 
exhibit gerosuppressant effects and  inhibit metabolic 
syndrome-induced cancer growth (Sarfstein et al, 2013; 
Herranz et al, 2010). CR reduces IGF-I-dependent 
nuclear factor-kappaβactivation to decrease murine and 
human pancreatic tumor growth and nuclear factor-
kappaβ activation (Harvey et al, 2014); and also reduces 
antigen load in the host from the gut microbiota to 
decrease metabolic syndrome-related diseases including 
cancer (Zhang et al, 2013). Both metformin and CR  
downregulate GSK-3 beta levels implicated in 
adipogenesis and hyperinsulinaemia. We have previously 
reported that metformin prevented the progression of 
prediabetes and CIN I cervical dysplasia in a Nigerian 
(Oriaifo et al, 2014). 
 
 
CR and metformin reduce air-way inflammation 
 
The obvious beneficial effects of CR and metformin in 
cardiac performance enhance pulmonary function.  There 
is obstructive respiratory insufficiency with pCO2 
retention in hypertensive patients with congestive failure 
and cardiac asthma (Cosby et al, 1957). CR (Johnson et 
al, 2007) and metformin (Park et al, 2012; Park et al, 
2012; Calixto et al, 2013) reduce markers of oxidative 
stress in over-weight individuals with moderate bronchial 
asthma. Via AMPK activation, metformin suppressed 
eosinophilic inflammation, vascular permeability and 
peribronchial fibrosis by suppressing IL-5 and -13, HIF-
alpha/VEGF-A pathway and TNF-alpha and NF-kappaβ 
mediated iNOS expression in lung tissue. 
 
 
Beneficial action of metformin in preventing visual 
defect attributable to early glaucoma and macular 
degeneration 
 
The gravity of diabetic retinopathy is highlighted by the  

 
 
 
 
finding that individuals with diabetes are 25 times more 
likely to become legally blind than non-diabetics (Azinge, 
2013). Vascular endothelial growth factor is implicated in 
the aetiopathogenesis of neovascular glaucoma and 
cataracts due to diabetes and hypertension (Simha et al, 
2013). Apart from effects in preventing progression of 
pre-diabetes, metformin and CR also inhibit vascular 
endothelial growth factor (Tadakawa et al, 2015; De 
Lorenzo et al, 2011) important in aetiopathology of 
diabetic retinopathy. These actions of metformin may be 
important in metformin’s effect in preventing progression 
of early glaucoma and macular degeneration which we 
have observed in a small cohort. 
 
 
Chronic use of metformin decreases constipation 
 
Diabetes mellitus may be associated with autonomic 
neuropathy-induced constipation and spurious diarrhea 
(Spangeus et al, 1999). Acute use of metformin may be 
associated with gastrointestinal discomfort and diarrhea, 
but this abates with chronic use in most of our patients. 
Metformin, taken chronically plus the increase of the 
FLOWER items in diet improves gastrointestinal health 
and decreases constipation which may be of concern in 
the aged and diabetics. Slow-release metformin 
preparations such as Glucophage XR (500 mg and 750 
mg tablets) may help in alleviating chronic constipation 
(www.google.com/patents/EP1865939A2).Individuals on 
CR may need to increase fruits and vegetables 
(FLOWER items) in diet in order to avoid risk of 
constipation. 
 
Metformin improves osteoblast function and 
decreases osteoporosis 
 
Falls and resultant fractures are age-relatedcomplaints. 
Diabetes mellitus is associated with bone loss (Molinuevo 
et al, 2009; Sedlinsky et al, 2011) who have shown in 
elaborate reports that bone remodelling is altered in the 
elderly and diabetic patients with consequent increased 
skeletal fragility and fracture risk. While rosiglitazone 
increases adipogenesis and osteoporosis, metformin 
increases the osteoblastic differentiation of bone marrow 
progenitor cells with resultant decrease in fracture risk 
and enhancement of bone healing in diabetic and non-
diabetics. Their evidence is supported by Gao et al 
(2008) who showed that metformin markedly stimulated 
the deposition of mineralised nodules and blocked the 
formation of cytoplasmic lipid droplets. Moderate CR, with 
or without exercise, that preserves calcium intake does 
not significantly cause bone loss (Redman et al, 2008). 
 
Metformin + calorie restriction promotes increased 
human healthspan over metformin alone 
 
Our  retrospective  observational  studies in patients have  
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Table I: Differential effect of metformin (M), metformin + calorie restriction(M+CR), sulphonylurea(S) and insulin(I) on 
cardiovascular morbidity 

 

Age     Age at Commencement in years    No of Years on Treatment   No With Heart Failure    No Alive After 30Years 

M                  45 ± 3.0                                                30                                               1                                             10 
n = 10 
M + CR         45 ± 5.0                                                30                                               -                                             10                

n = 10 

S                   45 ± 2.0                                               30                                                9                                              8 

n = 10             

I                    45 ± 3.0                                               30                                                8                                              6 
n = 10 

 
The difference between M and M+CR was not significant (P > 0.5). The M group had 1 death, compared to the M+CR with no 
death. Compared to S and I groups (DMR), the M+CR group was most significant in reducing deaths due to cardiovascular 
causes.  

 
 
 
shown that metformin + calorie restriction was more 
effective in maintaining euglycaemia, reducing body 
weight and promoting healthspan than metformin alone in 
pre-diabetics and type 2 diabetics. Further, in responsive 
patients, metformin was more effective than 
sulphonylureas or insulin in preventing all-cause 
mortality, especially deaths from microvascular and 
cardiovascular complications. This agrees with recent 
findings (DeFronzo, 2014; Nichols et al, 2001).  

Animal experimentations have shown that metformin 
increases mean lifespan and healthspan in 
Caenorhabditis elegans and mice (Berstein, 2012; Sato 
et al, 2012). 

In a retrospective comparison of the effects on 
metformin alone, metformin + calorie restriction, 
sulphonylurea and metformin on cardiovascular morbidity 
in patients between 1984 and 2014, metformin + calorie 
restriction was found to be most effective in prolonging 
health span (Table I). 
 
Metformin, renal function and lactate levels 
 
20-40% of patients with diabetes mellitus ultimately 
develop nephropathy and there is increased susceptibility 
of the aging kidney to ischemic injury. The genes 
implicated such as kidney injury molecule-I (Kim-I), MMP-
7 and hypoxia-inducible factor-I alpha may be down 
regulated by metformin and CR that reduce oxygen 
consumption by renal tubular cells (Chen et al, 2007; 
Takiyama et al, 2011).  Metformin exerts beneficial 
effects in obesity-induced renal injury by regulating 
systemic inflammation, insulin resistance and the renal 
AMPK/ACC pathway (Kim et al, 2013). However, 
concerns linger about the role of metformin in kidney 
function due to a probable risk of lactic acidosis. 
According to the European Association for the Study of 
Diabetes, metformin is safe unless the estimated 
glomerular filtration rate (eGFR) falls to below < 30 

ml/min per I.73 m2. This level has been revised upwards 
in a recent report (Warren et al, 2007) to 36-40 ml/min 
per I.73 m2 which is equivalent to 1.7 mg/dL creatinine 
serum level. This is more than the previous cut-off point 
of I.4 mg/dL in women and I.5 mg/dL in men and which 
was based on the calculated ability of the kidneys to 
remove 3 g of metformin at steady-state levels within 24-
48 hours. In fact, the ability to comfortably remove the 
drug extends up to creatinine levels of I.8-2.0 mg/dL 
(Lipska et al, 2011). 

Metformin is primarily excreted by the kidneys 
unchanged, and so might accumulate in severe renal 
failure. The risk for lactic acidosis with metformin is 3 
cases/100,000 patient years but this risk do not differ 
apparently in patients taking metformin versus other 
glucose-lowering drugs. Metformin levels are not linked to 
mortality in those who develop lactic acidosis (Lipska et 
al, 2011; McCormak et al, 2005) and hypoxia, 
haemodynamic compromise due to congestive cardiac 
failure may be more important. 
 
 
CONCLUSION 
 
Judging from their roles in infection, immune function, 
cancer prevention, cardiometabolic and neuropsychiatric 
health, the biguanide metformin in conjunction with 
calorie restriction seem licensed to prevent premature 
senescence and extend healthspan and lifespan. 
Metformin and CR through activation of AMPK may be 
key to the body’s modulation of responses due to 
external environmental cues and regulation of 
homeostatic mechanisms of the internal environment. 
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