

International Research Journal of Pharmacy and Pharmacology Vol. 13(1) pp. 1-2, March, 2025 Available online https://www.interesjournals.org/pharmacy-pharmacology.html Copyright ©2025 International Research Journals

Perspective

Innovations in Drug Delivery: Engineering Precision for Therapeutic Success

Aisha Rahman*

Department of Pharmaceutics, Global College of Pharmacy, UK

*Corresponding Author's E-mail: aisha.rahman@globalpharm.ac.uk

Received: 01-Mar-2025, Manuscript No. irjpp-25-169650; **Editor assigned:** 03-Mar-2025, PreQC No. irjpp-25-169650 (PQ); **Reviewed:** 17-Mar-2025, QC No. irjpp-25-169650; Revised: 21-Mar-2025, Manuscript No. irjpp-25-169650 (R); **Published:**

28-Mar-2025, DOI: 10.14303/2251-0176.2025.119

INTRODUCTION

Drug delivery systems (DDS) are central to the success of pharmacotherapy, determining how effectively an active pharmaceutical ingredient (API) reaches its target site in the body [1]. Beyond simply administering a drug, modern DDS aim to optimize pharmacokinetics, improve patient compliance, reduce side effects, and enable controlled or targeted release [2]. In recent years, interdisciplinary research has combined pharmaceutical science, materials engineering, and nanotechnology to revolutionize the way drugs are formulated and delivered [3]. These advances are transforming chronic disease management, cancer therapy, and treatment for previously "undruggable" conditions [4].

DESCRIPTION

Traditional drug delivery often relies on oral tablets, capsules, or parenteral injections [5]. While effective, these methods have limitations, including variable absorption, poor bioavailability for certain molecules, and frequent dosing requirements [6]. Controlled-release formulations were the first significant advancement, allowing gradual release over hours or days [7].

The development of nanocarriers—such as liposomes, polymeric nanoparticles, and dendrimers—has enabled targeted drug delivery to specific tissues or even individual cells [8]. For instance, liposomal formulations of chemotherapeutics like doxorubicin can reduce cardiac toxicity by directing the drug preferentially to tumor tissue [9]. Similarly, microneedle patches provide painless, self-administered transdermal delivery for vaccines or insulin, improving adherence and accessibility [10].

DISCUSSION

Advances in DDS can be categorized into targeted delivery, controlled release, non-invasive routes, and responsive systems.

Targeted delivery involves directing a drug to a specific site to maximize therapeutic action and minimize off-target effects. Active targeting uses ligands (such as antibodies or peptides) on drug carriers to bind selectively to receptors overexpressed on diseased cells [1]. Passive targeting, often employed in cancer treatment, exploits the enhanced permeability and retention (EPR) effect of tumor vasculature [2].

Controlled release systems are designed to release drugs at predetermined rates. Oral sustained-release formulations can maintain steady plasma concentrations, reducing the frequency of dosing [3]. Implantable devices, such as hormone-releasing rods or biodegradable wafers placed at tumor resection sites, offer localized, long-term therapy [4].

Non-invasive delivery is gaining prominence as patients and healthcare systems seek alternatives to injections. Inhalable insulin (e.g., Technosphere-based Afrezza) allows rapid absorption via the lungs, while nasal sprays can deliver peptides like calcitonin directly into systemic circulation [5]. Buccal films and sublingual tablets bypass the gastrointestinal tract, offering faster onset and improved bioavailability [6].

Responsive systems—sometimes called "smart drug delivery"—release their payload in response to specific physiological triggers. pH-sensitive nanoparticles can release drugs in the acidic environment of tumors, while glucose-responsive insulin formulations adjust release rates according to blood sugar levels [7].

Nanomedicine is a particularly fast-growing field. Nanoparticles not only protect drugs from degradation but can also enhance solubility for poorly water-soluble molecules [8]. Some nanocarriers are engineered to release their contents only after endocytosis by target cells, reducing systemic exposure [9].

Another promising direction is gene and RNA delivery. Lipid nanoparticles (LNPs) have gained attention due to their role in delivering mRNA vaccines for COVID-19. The same technology is being explored for siRNA and CRISPR-Cas9 gene editing therapies [10].

Challenges remain. Manufacturing complex delivery systems at scale while ensuring reproducibility and stability is not trivial [1]. Regulatory pathways for nanomedicines are evolving, but safety concerns about long-term biodistribution and clearance persist [2]. Biodegradable materials are favored, yet some nanoparticles accumulate in the liver or spleen, raising toxicity concerns [3].

Cost is another barrier—highly engineered systems can be expensive, limiting access in low-resource settings [4]. Moreover, while targeted delivery reduces systemic exposure, heterogeneity within tumors and dynamic changes in receptor expression can limit efficacy [5]. Interdisciplinary research and adaptive trial designs are helping to address these limitations [6].

DDS research is also leveraging 3D printing to fabricate personalized oral dosage forms, allowing precise control over dose, release profile, and even combining multiple drugs into a single tablet [7]. Implantable microchips that release medication wirelessly are entering clinical trials, potentially allowing physicians to adjust therapy remotely [8].

Patient-centered design is becoming a priority. Devices like smart inhalers record usage data, helping clinicians monitor adherence and optimize treatment [9]. Similarly, wearable infusion pumps for drugs like insulin or chemotherapy agents can improve quality of life by allowing therapy at home rather than in a hospital [10].

CONCLUSION

The evolution of drug delivery systems represents one of the most transformative trends in pharmacy and pharmacology.

By integrating engineering, nanotechnology, and patient-centered design, modern DDS offer unprecedented precision, safety, and convenience. Future developments will likely focus on smart, adaptive systems that respond to individual patient needs in real time, pushing the boundaries of personalized medicine.

REFERENCES

- 1 Feumba R (2015). Hydrogeology and aquifer vulnerability assessment in the Besseke watershed (Douala, Cameroon). Doctorate/PhD thesis, University of Douala 254.
- 2 Racicot M, Vaillancourt JP (2009). Evaluation of biosecurity measures in poultry farms in Quebec by video surveillance and main errors made. Bull Fr Vet Acad. 162: 265-272.
- 3 Gelaude P, Schlepers M, Verlinden M, Laanen M, Dewulf J (2014). Biocheck. UGent: A quantitative tool to measure biosecurity at broiler farms and the relationship with technical performances and antimicrobial use. Poult Sci. 93: 2740-2751.
- 4 Edea OG, Hinvi LC, Abou Y, Gbangboche AB (2019). Biological and zootechnical characteristics of the African catfish *Clarias gariepinus* Burchell, 1822. Euro Sci J. 15: 54-88.
- 5 Tiogue C, Bibou A, Kenfack A, et Tchoumboue J (2020). Socioeconomic and technical characteristics of fish farms in the Department of Mbam and Inoubou. Int J Biol Chem Sci. 14: 983-1000.
- 6 Can MF, Altug N (2014). Socioeconomic implications of biosecurity practices in small-scale dairy farms. Vet Q. 34: 67-73.
- 7 Allen JD, Richardson EL, Deaker D, Agüera A, Byrne M (2019). Larval cloning in the crown-of-thorns sea star, a keystone coral predator. Mar Ecol Prog Ser. 609: 271–276.
- 8 Altieri AH, Gedan KB (2015). Climate change and dead zones. Glob Change Biol. 21: 1395–1406.
- 9 Anderson CR, Siegel DA, Kudela RM, Brzezinskic MA (2009). Empirical models of toxigenic Pseudo-nitzschia blooms: potential use as a remote detection tool in the Santa Barbara Channel. Harmful Algae. 8: 478–492.
- 10 Aneja VP, Roelle PA, Murray GC, Southerland J, Erismanc JW, et al. (2001). Atmospheric nitrogen compounds II: emissions, transport, transformation, deposition and assessment. Atmospheric Environ. 35: 1903–1911