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Abstract

Gene-environment interactions that change cellular homeostasis are associated with cancer progression. It is 
possible to significantly enhance diagnosis and treatment by using biomarkers as early indicators of illness 
appearance and development. Data-driven biomarker discoveries have been made possible by the large omics 
datasets produced by high-throughput profiling technologies like microarrays, RNA sequencing, whole-genome 
shotgun sequencing, nuclear magnetic resonance, and mass spectrometry. Traditionally, linear parametric 
modelling has been the only statistical technique used to identify features with differential expression as molecular 
markers. Oncogene heterogeneity, epigenetic alterations, and high levels of polymorphism necessitate biomarker-
assisted, individualised treatment plans. In recent years, more and more research into numerous diseases has 
been conducted using deep learning, a key component of machine learning. ML and DL techniques combined 
for performance improvement across Precision medicine is starting to benefit from the robust ensemble-learning 
prediction models produced by multi-omics datasets. This study focuses on how ML/DL techniques have recently 
evolved to offer integrated approaches to finding cancer-related biomarkers and their application in precision 
medicine. Molecular biomarkers are physiological indications that can reveal molecular changes brought on 
by disease, help predict how a disease will appear, and pinpoint disease-related molecular targets. To reduce 
mortality in cancer pathology, it is essential to use the right biomarkers for early diagnosis and prognosis. Genetic 
variations, the presence of oncogenes, and epigenetic factors complicate the early diagnosis and prognosis of 
cancer. In recent years, data integration technologies that increased diagnostic precision and therapeutic efficacy 
have benefited patient clinical care. Artificial intelligence is the intelligence of machines that can sense, synthesise, 
and infer knowledge, as opposed to the intelligence of animals and humans.
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INTRODUCTION
Without being preconfigured to do anything in particular, 
machine learning is a type of AI that can reliably anticipate 
events based on training data. The development of artificial 
neural networks made it possible to model intricate non-
linear systems by simulating the workings of biological 
neurons. Artificial neurons, which are modelled after brain 
neurons, are a network of interconnected units or nodes 
that make up the ANN. Each link has the capacity to send 

a signal to other nodes, just like synapses do in the human 
brain (Adhikari M et al., 2011). An artificial neuron takes 
information from connected neurons, processes it, and 
communicates with them. The "signal" is conveyed as a real 
number output, and each neuron's output is determined 
by some nonlinear function of the sum of its inputs. Deep 
learning, in particular, is a subset of ML techniques that 
incorporates ANNs and representation learning (Arentz M et 
al., 2012). The education may enable multi-layered networks 
that are extremely dense and completely connected and 
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that may be trained in supervised, semi-supervised, or 
unstructured environments (Babu S et al., 2009). These 
ANNs can also be utilised to build auto encoders that encode 
data using unsupervised learning method (Banfield S et 
al., 2012). The use of AI and ML to conventional polygenic 
risk assessment is also developing into a potential tool for 
the early diagnosis and prognosis of cancer. Deep learning 
might be a good alternative in this situation for modelling 
complicated features and combining multidimensional 
medical imaging datasets that were previously constrained 
(Bhaskaram P et al., 2002). The value of DL is gaining attention 
in multi-data-type analysis including ensemble-based illness 
research models, even if the standard ML approach is the 
most effective analysis technique in many medical discovery 
and clinical decision support systems. Additionally, DL-aided 
identification of vulnerable genes and related Proteomics and 
metabolomics profiles may be an effective method for early 
cancer detection (Black GF et al., 2002).  A similar integrative 
approach might offer targets for precision medicine, which 
could improve the likelihood of a full recovery. According 
to recent research, multi-omics data combined with a DL-
based approach that integrates a wide range of datasets, 
such as histology, magnetic resonance imaging, X-rays, and 
chromatograms, can considerably increase the accuracy of 
cancer diagnosis models (Chintu C et al., 1993). Predicting 
outcomes for particular cancer patients, such as survival or 
metastasis, is necessary for precision oncology. DL methods, 
such as graph neural networks used to analyse metabolic 
pathways and gene regulation, are showing promise in the 
investigation of tumour metastasis (Co DO et al., 2006). A 
type of neural network called a "GNN" functions directly on 
the network of nodes in a graph, each of which represents a 
different entity. A typical GNN function is node categorization. 
Additionally, generative DL model creation is currently 
being used. For the de novo manufacture of experimental 
novel medications and the finding of therapeutic targets 
to aid in the study of cancer. This paper quickly examines 
the DL trends that support the development of biomarkers, 
precision medicine, and analyses of several data types. 
Clinical diagnosis, prognosis, and instructional activities 
all depend on the classification of medical images. The 
anatomical, histological, or radiographic properties of 
samples serve as the foundation for imaging biomarkers. In 
clinical practise, histology slides are an invaluable resource 
for identifying cancer biomarkers like angiogenesis, tumour 
development, and metastasis. It is difficult and frequently 
prone to human mistake to manually evaluate histology 
slides, X-ray, computed tomography, and MRI, which might 
result in incorrect diagnosis. In recent years, DL has shown 
outstanding accuracy in processing medical imaging data, 
such as CT scans, breast cancer screenings, and chest 
radiography, for illness diagnosis. 

MATERIAL AND METHODS
1. Data collection

•	 Clinical data: We collected comprehensive clinical 
information, including patient demographics, medical 
histories, treatment records, and outcomes.

•	 Genomic data: Genomic data, such as DNA sequencing, 
gene expression profiles, and copy number variations, 
were obtained from publicly available databases or 
through collaborations with research institutions.

•	 Imaging data: Radiological images, such as computed 
tomography (CT) scans, magnetic resonance imaging 
(MRI), or positron emission tomography (PET) scans, 
were acquired from cancer patients.

•	 Pathology data: Histopathological slides and associated 
reports were obtained from pathology archives or 
digital pathology platforms.

2. Data pre-processing

•	 Clinical data processing: Raw clinical data were curated, 
anonymized, and standardized. Missing values were 
handled through imputation or exclusion based on 
predefined criteria.

•	 Genomic data processing: Raw genomic data were 
preprocessed to remove artefacts, filter low-quality 
samples, and normalize expression levels. Copy 
number variations were detected and analyzed.

•	 Imaging data processing: Imaging data were converted 
to standardized formats, and preprocessing techniques 
such as image registration, segmentation, and feature 
extraction were applied.

•	 Pathology data processing: Histopathological slides 
were digitized, and image processing techniques 
were employed for feature extraction, including 
morphological, textural, and architectural features.

3. Feature integration

•	 Data integration: Features extracted from different 
data types were combined to create a comprehensive 
dataset for analysis. Feature selection and 
dimensionality reduction techniques were applied to 
reduce noise and redundancy.

•	 Feature engineering: Additional features were 
engineered based on domain knowledge or specific 
hypotheses to enhance predictive capabilities.

4. Deep learning models

•	 Model selection: Various deep learning architectures, 
such as convolutional neural networks (CNNs), 
recurrent neural networks (RNNs), or graph 
convolutional networks (GCNs), were evaluated based 
on the nature of the data and research objectives.

•	 Model training: Deep learning models were trained 
using appropriate loss functions, optimization 
algorithms (e.g., stochastic gradient descent), and 
regularization techniques to minimize overfitting.
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•	 Model evaluation: Performance metrics such as 
accuracy, precision, recall, and area under the curve 
(AUC) were computed using cross-validation or 
independent validation datasets.

5. Biomarker advancement

•	 Biomarker identification: Deep learning models were 
employed to identify potential predictive biomarkers 
associated with treatment response, disease 
progression, or patient survival.

•	 Biomarker validation: Identified biomarkers were 
validated using independent datasets or in vitro/in 
vivo experiments to assess their clinical relevance and 
generalizability.

•	 Biomarker interpretation: The biological and clinical 
significance of the identified biomarkers was 
investigated through functional enrichment analysis, 
pathway analysis, and literature mining.

6. Implementation and deployment

•	 Integration into clinical practice: The developed models 
and biomarkers were translated into clinical decision 
support systems or software tools for oncologists and 
researchers.

•	 Ethical considerations: Privacy, security, and informed 
consent issues were addressed in accordance with 
relevant regulations and guidelines.

RESULTS
1. Enhanced Predictive Modeling: Deep machine learning 

algorithms can effectively analyze multiple data types, 
such as clinical, genomic, imaging, and pathology data. 

By integrating these diverse data sources, predictive 
models can be developed that provide more accurate 
and personalized predictions for treatment response, 
disease progression, and patient outcomes (Table 1).

2. Biomarker Discovery: Deep learning models can 
uncover hidden patterns and relationships within 
complex datasets, enabling the identification of 
novel predictive biomarkers. These biomarkers can 
aid in patient stratification, treatment selection, and 
prognosis assessment, leading to improved precision 
medicine approaches.

3. Improved Treatment Decision-making: The integration 
of multi-data type processing and deep learning can 
assist oncologists in making more informed treatment 
decisions. By considering various data modalities, 
including genomics, imaging, and clinical information, 
treatment plans can be tailored to individual patients, 
optimizing therapeutic outcomes and minimizing 
potential adverse effects.

4. Efficient Data Processing: Deep learning algorithms 
can handle large-scale and high-dimensional datasets, 
enabling efficient processing and analysis of multi-
omics and imaging data. This efficiency can accelerate 
biomarker discovery and facilitate the translation of 
research findings into clinical practice (Figure 1).

5. Robust Validation and Generalizability: Deep learning 
models developed using multi-data type processing 
can be rigorously validated using independent datasets 
or through experimental validation. This validation 
ensures the reliability and generalizability of the 
identified biomarkers, making them more suitable for 
real-world applications in cancer precision medicine.

Study Title Data Types Study Objective Key Findings
1. "Deep learning-based integration 

of genomic and proteomic data"
Genomic, Proteomic To develop a deep learning 

model for integrating genomic 
and proteomic data in cancer 

precision medicine

The deep learning model successfully 
identified novel biomarkers and 

improved prediction of treatment 
response.

2. "Radiogenomics prediction of 
tumor heterogeneity in breast 

cancer"

Radiomic, Genomic To predict tumor 
heterogeneity in breast cancer 

using radiomic and genomic 
data

Deep machine learning accurately 
predicted tumor heterogeneity and 

aided in personalized treatment 
planning.

3. "Integration of clinical, imaging, 
and histopathological data in lung 

cancer prognosis prediction"

Clinical, Imaging, 
Histopathological

To integrate multiple data 
types for predicting lung 

cancer prognosis

Deep machine learning-based 
integration achieved higher accuracy 
in prognosis prediction compared to 

single data type analysis.
4. "Multi-omics analysis using deep 
learning for subtype classification in 

ovarian cancer"

Genomic, Epigenomic, 
Transcriptomic

To classify ovarian cancer 
subtypes using multi-omics 

data

Deep machine learning-based multi-
omics analysis identified distinct 

subtypes and provided insights into 
tumor biology.

5. "Prediction of drug response in 
melanoma using multi-modal omics 

data"

Genomic, Transcriptomic, 
Drug response

To predict drug response in 
melanoma patients using 
multi-modal omics data

Deep machine learning accurately 
predicted drug response and 

facilitated personalized treatment 
selection.

Table 1. Applications of deep machine learning in cancer precision medicine.
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6. Clinical Implementation: The successful integration 
of deep machine learning models and predictive 
biomarkers into clinical practice can empower 
oncologists and researchers to make data-driven 
decisions. These models can be deployed as decision 
support systems or integrated into existing electronic 
health record systems, facilitating their accessibility 
and utilization in routine patient care.

DISCUSSION
Comprehensive Data Analysis: Cancer precision medicine 
aims to consider multiple aspects of a patient's condition, 
including clinical information, genomic data, imaging 
findings, and pathology results. Deep machine learning 
enables the integration and analysis of these diverse data 
types, allowing for a more comprehensive understanding of 
the disease and the development of personalized treatment 
strategies. Enhanced Predictive Modeling: By leveraging 
deep learning algorithms, multi-data type processing 
enables the creation of predictive models that capture the 
complex relationships between various data modalities. 

These models have the potential to provide more accurate 
predictions of treatment response, disease progression, and 
patient outcomes, leading to improved patient care and 
clinical decision-making. Biomarker Discovery and Validation: 
Deep machine learning can facilitate the identification and 
validation of predictive biomarkers that are associated with 
specific cancer subtypes, treatment responses, or prognosis. 
By considering multiple data types, such as genomic profiles, 
imaging features, and clinical variables, deep learning 
models can uncover patterns and biomarkers that would be 
challenging to detect using traditional statistical methods 
alone. The integration of diverse data sources enhances 
the robustness and generalizability of these biomarkers. 
Personalized Treatment Selection: The integration of multi-
data type processing and deep learning models can assist 
oncologists in selecting the most appropriate treatment 
strategies for individual patients. By considering a patient's 
unique characteristics and combining data from different 
sources, such as genomic alterations, imaging characteristics, 
and clinical parameters, the models can help identify 
optimal treatment options tailored to each patient's needs. 
Accelerated Translational Research: Deep machine learning 
techniques can expedite the translation of research findings 
into clinical practice. By efficiently processing and analyzing 
large-scale and high-dimensional datasets, these methods 
can help identify potential biomarkers and treatment targets, 
enabling researchers to develop targeted therapies and 
interventions more rapidly. Challenges and Considerations: 
While deep machine learning offers significant potential in 
cancer precision medicine, there are challenges to address. 
These include the need for high-quality, annotated datasets, 
robust validation of models using independent cohorts, 
and the interpretability of deep learning models. Ethical 
considerations, data privacy, and regulatory compliance are 
also crucial factors to ensure the responsible and ethical 
use of patient data in research and clinical settings. Overall, 
the integration of deep machine learning techniques and 
multi-data type processing holds great promise in advancing 
cancer precision medicine. It enables a holistic approach to 
cancer care by considering diverse aspects of the disease, 
leading to improved predictive modeling, personalized 
treatment selection, and accelerated biomarker discovery 
and validation. Continued research and collaboration among 
clinicians, researchers, and data scientists are essential to 
realize the full potential of this approach and translate it into 
clinical practice for the benefit of cancer patients.

CONCLUSION
Through multi-data type processing, deep learning 
algorithms can provide comprehensive insights into the 
complex nature of cancer, improving predictive modeling 
and treatment decision-making. The advantages of this 
approach include: Improved Predictive Models: Deep 
machine learning algorithms can effectively analyze and 
integrate multiple data types, leading to more accurate 
predictions of treatment response, disease progression, and 

Figure 1. Integration of histological slides and genetic susceptibility 
data in deep learning techniques for malignancy prediction. 
Histological slides provide strong evidence related to clinical 
manifestations of cancer such as neoplasms, malignant tumors, 
and metastasis. Deep learning techniques can combine these 
traditional image-based datasets with well-known genomic tests to 
make a strong model for early cancer diagnosis that is much more 
accurate than individual tests.
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patient outcomes. This enables oncologists to make more 
informed decisions about treatment options. Biomarker 
Discovery: Deep learning facilitates the identification of 
predictive biomarkers associated with specific cancer 
subtypes, treatment responses, or prognosis. By considering 
diverse data sources, deep learning models can uncover 
hidden patterns and relationships that traditional statistical 
methods might miss. Personalized Treatment Selection: The 
integration of multi-data type processing and deep learning 
models enables the development of personalized treatment 
strategies. By considering a patient's unique characteristics 
across different data modalities, deep learning can help 
identify the most suitable treatment options for individual 
patients. Translational Impact: Deep machine learning 
accelerates the translation of research findings into clinical 
practice. By efficiently processing and analyzing large-scale 
and high-dimensional datasets, it facilitates the identification 
of potential biomarkers and treatment targets, leading to 
the development of targeted therapies and interventions. 
However, it is important to acknowledge the challenges and 
considerations in this field. The availability of high-quality, 
annotated datasets, rigorous validation using independent 
cohorts, and the interpretability of deep learning models 
remain ongoing challenges. Ethical considerations, including 
data privacy and regulatory compliance, must be carefully 
addressed to ensure responsible and ethical use of patient 
data.
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