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INTRODUCTION

Food Supply Chain (FSC), is a complex network, of small 
to medium-sized farms and processing facilities, that 
interact and aid multinational firms, with their supply and 
distribution activities [1]. FSC’s provide access to healthy 
food across the world and are of prominent importance 
as access to safe and fresh food is vital to human life. 
Further, instilling customer’s confidence in the safety 
and quality of foods they consume is of vital importance 
for profit maximizations within the Food Chains [2], thus 
securing food safety and quality is a matter of international 
significance for food trade.

Food losses resulting from quality deteriorations account 
for one-quarter of the produced food supply (614 kcal/
cap/day) [3], and quality assessments within food chains 
aid with curbing food losses through damage reduction, 
damage prediction, and damage sorting allowing part of 
the food to be sold within acceptable markets [4].

In response to the quality demands from customers and 
regulatory bodies, numerous computer vision technologies 
have been introduced into the food chains for object 

recognition and information extraction from images for 
quality evaluation and automatic inspection [5].

However, HSI systems configured through the integration of 
computer vision and spectroscopy techniques standouts as 
one of the predominant techniques regarding the amount 
of data captured for quality assessment. The spectral 
imagery is three dimensional with two spatial and one 
spectral dimension providing continuity of data stored in 
the wavelength domain and Hyperspectral Imaging is one 
of the spectral imagery techniques that capture images 
with a great number of continuous wavebands enabling 
a full spectrum to be extracted from each of the pixels 
captured [6]. Additionally, HSI systems are configured as 
an integration of two classical optical sensing technologies 
(imaging and spectroscopy) towards monitoring both 
physical and morphological characteristics and intrinsic 
chemical and molecular information within food products 
in a swift and non-intrusive manner for quality and safety 
assessment [7]. In contrast, the Hyperspectral Images 
captured contain a set of monochromatic images with 
continuous wavelengths providing redundant information 
making the data sets highly correlated and complex, 
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requiring new statistical techniques for complexity reduction 
[8]. However, the development of new and innovative 
algorithms for processing and analysis of hyperspectral data 
for usage within food chains, facilitates new avenues for 
information processing from correlated and complex data 
sets [9].

Therefore, a greater level of insight into the Hyperspectral 
Imagery Process, knowledge on recent developments and 
advances towards efficiency/performance improvements, 
and applications within various food chains for contaminant 
detection, defect identification, constituent analysis, 
etc. along with a holistic understanding of technological 
innovations in this domain is needful in gauging the 
benefits and challenges towards configuring the systems 
for rapid, objective inspection, sorting, and grading, in 
order to ensure superior, consistent quality of the food 
to the consumers. However, most of the research in this 
domain concentrates on the image processing and analysis 
for quality assessments within FSC’s and very few of them 
concentrate on the holistic understanding of the systems 
and challenges towards application within food chains [5-
8,10,11].

Therefore, this review is undertaken towards a 
comprehensive understanding of the HSI systems and recent 
developments to provide an insight into the motivations 
behind the implementation of HSI systems along with 
plausible challenges to eliminate the preconceived opinions 
regarding implementation costs and data management 
for successful implementation/adaptation of HSI systems 
within FSC’s for Quality Assessments. A systematic literature 
review process is adopted towards selection, analysis, and 
synthesis of the relevant articles to understand the state of 
development in this regard and to identify knowledge gaps 
that demand a future investigation.

RESEARCH OBJECTIVES

The study aims at synthesizing the fragmented knowledge 
on HSI systems to fulfill the below research objectives

RO1. To identify the plausible challenges towards successful 

implementation/adaptation of HSI systems within FSC’s for 
Quality Assessments.

RO2. To provide an overview of the recent developments 
within the HSI Systems towards deploying the full potential 
of the HSI systems for real-time monitoring of quality and 
safety of foods.

RESEARCH METHODOLOGY

A Structured Literature Review (SLR) process was adopted 
for the study, as it aims at addressing the issues presented 
through the analysis of ideas proposed to identify 
knowledge gaps that demand future investigation [12] This 
process aids in the stimulation of new theories, ideologies, 
practices, methodologies based on a clear understanding of 
the progress of work in the domain considered. It also aids 
in understanding the relationships and patterns between 
the works under consideration. It fosters a comprehensive 
search of relevant articles on a specific topic, which can 
further be used for appraisal and synthesis according to 
a well-defined explicit method [13]. The review process 
incorporates multiple stages to comprehensively cover the 
research area under consideration. The stages included are 
as described below:

•	 Searching

•	 Screening

•	 Synthesis [14].

Searching

The search aimed at identifying all the possible sources 
of information related to the research objectives under 
consideration. The search was executed by identifying a list 
of keywords from articles that provided a holistic preview of 
the HSI systems [5-8,10,11]. The list of keywords identified 
were used as search strings to identify relevant articles 
from electronic databases such as Science Direct (Elsevier), 
Emerald Insight, Semantic Scholar, Springer Link, Wiley, 
WorldCat, Taylor and Francis, Hindawi, and EDP Open. 
Table 1 lists the keywords used for searching the relevant 

*Hyperspectral* *Imaging* AND/OR

*Algorithms*

NOT

*Analysis*
*Applications* *Astronomy*
*Challenges* *Atmosphere*
*Classification* *Ecology*
*Cost* *Military*
*Detection* *Mineral*
*Developments* *Surveillance*
*Evaluation* *Urban Development*
*Food Authentication*
*Food Quality*
*Food Safety*
*Identification*
*Prediction*
*Processing*

Table 1: Keywords and search strings used in the systematic review.
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literature from the databases, books, etc. The keywords 
were then used to construct search strings using Boolean 
operators “AND, OR, NOT”, to identify the relevant titles 
and abstracts from peer-reviewed journals published within 
electronic databases.

Screening
A total of 100 articles were identified from the publication 
portals, books, etc. Based on the criterion defined for 
inclusion, exclusion as per Table 2, and alignment with 
regards to research objectives and contribution towards the 
knowledge on progress of work in the domain considered, 
only 75 articles were shortlisted. Further, the elimination 
of redundancies resulted in 60 articles from “thirty eight” 
reputed journals, ‘three” Proceedings, and “six” books for 
comprehensive analysis.

Synthesis
The selected articles were analysed and synthesized 
comprehensively based on the classification framework 
listed in Table 3, to identify the plausible challenges along 
with recent developments towards adaptation of HSI 
systems within Food Chains.

Proceeding with the final list of articles identified for the in-
depth analysis, the section below provides a brief overview 
of the significant findings from the articles selected.

RESEARCH ANALYSIS AND FINDINGS

Based on the publication of articles in a myriad of Journals, 
“Study of non-destructive techniques for Quality Assessments 
within Food Chains” stands out as a predominant area of 
research for Academicians, Professionals, and Consultants, 
as securing food safety and quality is vital for human life 
and health. The sections below provide an in-depth review 
of the findings relative to the research objectives under 
consideration.

Hyperspectral imaging (Inception and Description)

The Hyperspectral Imaging Technology was introduced 
by Goetz AFH et al., [15] and their research team at the 
California Institute of Technology during the process of 
using Airborne Image Spectrometers for Mineral Mapping.

Besides, Hyperspectral remote sensing from airborne and 
satellite systems has been a prominent source of data for 
numerous remote sensing applications over the past two 
decades, as it is capable of assessing individual pixels within 
the Images for object identification within different areas 
including agriculture and forestry, ecology, atmosphere 
studies, geology and mineral exploration, marine, coastal 
zone management, inland waters and wetlands, urban 
development, snow and ice for scientific analysis and within 

Table 2: Inclusion and exclusion criterion.

Inclusion Criterion Exclusion Criterion
Structured Literature Reviews, that comprehensively provide a landscape of extant literature and 
developments within Hyperspectral Imaging
Articles Concentrating on Hyperspectral Image

Acquisition, Pre-Processing, Classification, Prediction, Applications within Food Chains, 
Challenges and Recent Developments

Articles on   Multivariate Techniques used for
Hyperspectral Image Analysis.

Articles concentrating on applications 
other than the Food Industry.

Table 3: Classification framework.

Year About HSI/ Acquisition Pre-Processing and Image Analysis Recent Developments and Applications Total

Before 2010 Goetz AFH et al. [15] Gowen AA et al. [10], Rinnan A et al. [34], 
Robila SA et al. [39], Lee JB et al. [40].

Del Fiore A et al. [55], Gómez-Sanchis J et al. 
[58], Heia K et al. [59], Ariana DP et al. [62]. 9

2011 Siripatrawan U et al. [53] 1

2012 Lorente D et al. [8], Feng YZ 
et al. [25].

Michael TE et al. [28], Vidal M et al. [33], 
Lasch P et al. [72]. Elmasry G et al. [49], Wu D et al. [66]. 7

2013 Qin J et al. [6], Wu D et al. [7]. Kwan H et al. [9] Pablo AC et al. [60], Mohammed K et al. [64]. 5

2014 Huang H et al. [22], Lu G et 
al. [26]. 2

2015 Qiong D et al. [43] Gerretzen J et al. [38] 2

2016
Sun DW [5], Shukla A et 
al. [16], Siche R et al. [17], 
Kamruzzaman M et al. [18].

Toksöz MA et al. [37] Lim J et al. [68] 6

2017 Ravikant L et al. [11], Lu Y et 
al. [24], Mishra P et al. [27]. Arora N et al. [41] Ricardo V et al. [19], Zhao X et al. [56], 

Rasool K et al. [61], Lía V et al. [65]. 8

2018 Li X et al. [23] Fordellone M et al. [45], Hu H et al. [73].
Roberts J et al. [50], Ropelewska E et al. 
[57], Wang Y et al. [67], Qi RZ et al. [69], 
Abel B et al. [70].

8

2019 Mahajan MP et al. [21] Yadav H et al. [46], Paoletti ME et al. 
[47], Gogineni R et al. [48].

Yao X et al. [30], Rizwan Q et al. [31], 
Michael M et al. [51], Fu X et al. [52], Zu X 
et al. [63].

9

2020 Lv W et al. [20] Riggs DR et al. [54], Vazquez JS et al. [71]. 3
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numerous military applications such as camouflage, littoral 
zone mapping, and landmine detections, etc. [16].

Besides, spectral imagery includes a stack of images of 
an object within different spectral bands and classified 
based on the number and spectral width of the bands 
into Multispectral, Superspectral, Hyperspectral, and 
Ultraspectral Imagery wherein the number of bands and 
spectral resolution increases from Multispectral to Ultra 
spectral from 1-10 to >1000 and ≈ 100 nm to ≈ 1 nm 
respectively. Additionally, as the HSI systems are capable of 
capturing 100-1000 spectral bands with a spectral resolution 
around ≈ 1 nm, the imaging system stands out as the most 
powerful spectroscopic technique for non-destructive 
analysis towards simultaneously providing physical and 
geometrical characteristics such as shape, size, appearance, 
and color of the sample, along with the providing the chemical 
composition of the sample using spectral analysis [17].

Moreover, Imaging techniques lack the capability of 
analysing the chemical compositions due to the absence of 
spectral data and spectroscopic techniques lack information 
on the spatial distribution of constituents within the 
sample [18]. Hence, Hyperspectral imagery technology 
was introduced with the integration of two classical 
optical sensing technologies of conventional imaging and 
spectroscopy towards capturing both spatial and spectral 
data from the target sample fostering in-depth evaluation 
of food safety and quality [6].

Also, the HSI systems capture spectral information (λ 
wavelengths) along with the two-dimensional spatial 
information, generating a 3D Hyperspectral Cube or Image 
Cube with three-dimensional data [7].

Image acquisition
Further, the main principle behind HSI is that materials 
reflect, scatter, or absorb energy differently when subjected 
to an electromagnetic radiation source at different 
wavelength ranges resulting from differences in chemical 
compositions and physical structures [19]. Therefore, 

such images are acquired by exposing the food samples at 
molecular levels to light photons to measure the absorbed 
or emitted radiation intensities. Additionally, the technique 
uses a wide range of the light spectrum, causing the light 
striking each pixel to break down into many different spectral 
bands capable of providing more information relative to the 
sample exposed. Furthermore, the parameter configuration 
within the HSI systems i.e. the selection of an optimal 
range of wavelengths within the electromagnetic spectrum, 
employing the right type of the image acquisition mode, and 
finally employing the right type of the image sensing mode 
is vital towards capturing the right and needful information 
from the samples [11].

Likewise, the core components within an HSI system 
include a source of light to illuminate the object, a lens for 
focusing and delineating the field view, a spectrograph for 
splitting the light into different spectral bands, a camera for 
capturing final spatial-spectral images, and finally a software 
to monitor the image acquisitions. Besides, the selection of 
these components is highly crucial to ensure the proper 
performance of the systems towards acquiring reliable high-
quality hyperspectral images [18].

Similarly, the wavelengths within the electromagnetic 
spectrum used for hyperspectral imaging range from UV 
light, extend through the visible spectrum, and end in the 
near-IR or shortwave IR [20]. Besides, the spectral range 
for an HSI system is defined based on the type of camera, 
spectrograph, and illumination conditions used [21].

Likewise, the choice of the camera within the hyperspectral 
image system detector is dependent on the required 
wavelength, the Quantum Efficiency (QE) representing the 
sensitivity, and finally the cost. Further, Silicon (Si)-based 
Charge-Coupled Device (CCD) or Complementary Metal-
Oxide-Semiconductor (CMOS) cameras, Indium Gallium 
Arsenide (InGaAs)-based array detectors, and Mercury 
Cadmium Telluride (HgCdTe)-based array detectors are most 
commonly used towards configuring the HSI systems [22].

Besides, HSI systems use three different image acquisition 

Figure 1: Image acquisition modes.
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modes (Point scan, Line Scan, and Area Scan- as illustrated 
within Figure 1) to capture the data in the form of a 3D 
Hyperspectral Cube (a). Wherein, the “point scan” system 
captures the Intensity data for all the wavelengths in a pixel 
by pixel manner, the “line scan” system (b) captures the 
Intensity data for all the wavelengths for a row of pixels at 
a time and finally, the “area scan” system (c) captures the 
intensity data for each of the wavelengths for all the pixels 
at a time [7, 6, 11, 23].

Additionally, the HSI systems use different sensing modes 
for data acquisition depending on the properties of the 
sample being analysed. Furthermore, the three common 
sensing modes used (Figure 2) within the HSI systems can 
be classified as reflectance, transmittance, and interactance 
based on the different lighting and detector configurations 
used to capture dissimilar effects of data acquisition from 
the same sample. [18].

Wherein, the reflectance mode (a) positions the detector 
and light source above the sample facilitating the detection 
of external quality characteristics such as color, size, shape, 

and surface defects. In contrast, the transmittance mode 
(b) facilitates the evaluation of internal quality parameters 
as the detector and light source are positioned on opposite 
sides of the sample. On the contrary, the interactance mode 
(c) facilitates the assessment of the sample properties 
within a minimum distance from the surface, as it integrates 
both reflectance and transmittance through the placement 
of detector and light source on the same side of the sample 
separated by a light shield [11,23,24].

Ultimately, the final output (Figure 3) from the Image 
Acquisition process, is a 3-D cube with a series of 
narrowband sub-images arranged across the reflectance 
spectrum (amount of energy reflected by the surface at a 
specific wavelength) providing two spatial dimensions (x, y), 
one spectral dimension (λ), along with the intensity values 
of the pixels characterizing their unique spectral footprints 
[17, 25-27].

Besides, the image reliability within HSI systems is highly 
dependent on the system configurations, as minute 
variations within the configurations result in variations 

Figure 2: Image sensing modes.

Figure 3: 3-D cube and spectral footprints.
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within the spectral profiles of reference spectra obtained 
from a sample. Hence, it is highly essential to eliminate 
the variability through the usage of standardized/objective 
calibration and validation protocols that aim at standardizing 
the spectral and spatial axes of the hyperspectral image to 
validate the acceptability and reliability of the extracted 
spectral and spatial data. Thus, Wavelength Calibration 
(to identify each pixel along the spectral dimension with 
a specific wavelength), Spatial Calibration (to determine 
the range and the resolution of the spatial information), 
Spectral Calibration (to determine the spectral band 
centre’s for all samples within a hyperspectral data cube), 
Curvature Calibration (to correct the reflection effect of 
light on food with spherical geometries using the angle of 
light incidence), and Reflectance Calibration (to calibrate 
the raw intensity image into reflectance or absorbance 
image with black (D) and white (W) reference images) are 
generally used within the HSI systems towards ensuring the 
consistency and reliability of the acquired hyperspectral 
image data [7,6,22,23,25,28, 29].

Challenges: However, the traditional HSI systems are 
relatively expensive and bulky as they require high precision 
scanning optomechanics elements and computer controls, 
thus making them inconvenient for handling and usage 
within the Food Chains for Quality Assessments [30]. 
Further, abrupt behaviour of instrument, environment, 
or imperfections within the electronic circuitry result in 
variations within the “signal to noise” ratio within certain 
wavelength bands impacting the quality of the Hyperspectral 
image acquired [31].

Likewise, the addition of a third dimension containing spectral 
or band information to the conventional 2D image framework 
within the Hyperspectral 3D Imagery, induces complexity 
within the calibration framework towards dealing with the 
variations within the spectral profiles of reference spectra 
obtained from the sample [23]. Similarly, the calibration 
requirements are different for different food products, calling 
out for in-depth product-specific knowledge to correlate 
the spectral information from the Hyperspectral Cube to the 
desired measurement metric [32].

Image pre-processing
Nonetheless, HSI systems can capture both spatial and 
spectral information, the data extracted from these images 
need corrections on effects induced from random noise, 
length variation of the light path, and light scattering 
[10]. Additionally, the hyperspectral imaging is subjected 
to variations resulting from external factors, system 
components, and complexities within the foods, as the food 
samples are characterized with surface inhomogeneities 
resulting in variations within the collected data. Besides, 
the light incident on the food material also experiences 
scattering due to physical properties of food material like 
cellular structure, particle size, density, etc., and absorption 
resulting from chemical composition like carbohydrates, 

protein, fat, etc, within the foods [11]. Further, to convene 
spectroscopic analysis, the regions of interest are to be 
selected by thresholding the image at a single waveband 
or a ratio and/or difference image, and to convene image 
analysis limited number of images are to be selected from 
massive images available for fast computation [25]. Hence, 
image pre-processing is vital towards building robust 
prediction and classification models for Quality Assessment. 
Though several techniques and algorithms are available for 
image pre-processing, their application and performance 
are highly dependent on further processing and analysis 
requirements. Therefore, the selection of the right pre-
processing is done iteratively towards the development of 
a robust model with the best predicting ability [18,23,33].

Whilst, a detailed review of all the available pre-processing 
methods is presented by [34], only a few of the important and 
commonly used pre-processing methods such as Averaging, 
Smoothing, Normalization, Standard Normal Variates, 
Multiplicative Scatter Correction, Derivative Correction, 
Transformation, Baseline correction, Dimensionality 
Reduction, Nearest Neighbourhood Comparison, and 
Thresholding/Masking are presented in the Table 4 below.

Challenges: Although several techniques and algorithms 
are available for image pre-processing, the selection of 
an optimal pre-processing is among the main bottlenecks 
within the HSI analysis. Based on the multitude of pre-
processing methods available for baseline correction, 
smoothing, and alignment, etc. pre-determined clarity on 
the method to be used for each of the data set generated is 
nearly absent-leading the analysts to select the right option 
through trial and error fashion [38].

Feature extraction
Finally, a Region of Interest (ROI) that excludes redundant 
background information within the combined or original 
calibrated image is generated after image pre-processing. 
In addition to the image pre-processing techniques, several 
image analysis techniques are further employed to extract 
useful image features from the Hyperspectral Image data for 
further analysis. Few of the feature extraction techniques 
such as Principal Component Analysis (PCA), Independent 
Component Analysis (ICA), Minimum noise fraction, Gabor 
filter, Grey Level Co-Occurrence Matrix (GLCM), Wavelet 
transform, Wide line detector, etc. presented in the Table 
5 below, are generally employed to extract image features 
effectively [22].

Challenges: However, the choice of the feature selection 
algorithms is dependent on the size of the dataset, the 
nature of the problem, prediction accuracy, and complexity 
levels [43].

Data modelling and post-processing
Additionally, hyperspectral imaging for food monitoring 
and assessment calls out for real-time classification of the 
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Hyperspectral cube, which involves the prediction of the 
class of the item. Additionally, the Hyperspectral image 
classification aims at assigning a pixel (or a spectrum) to one 
of a certain set of predefined classes. Further, based on the 
usage of the training sample, the HSI classification algorithms 
are generally classified into unsupervise and supervised 
classifications. However, the pixel-wise classification 
techniques face discrimination problems in situations 
with high intraclass spectrum variability and low interclass 
spectral variability, therefore spatial-spectral classification 
methods are employed that explore additional information 
of spatial dependency for classification. In addition to the 
classification, Hyperspectral Image Regression enables the 
prediction of constituent concentration in a sample at the 
pixel level, thus facilitating spatial distribution or mapping 
of a particular component in a sample to be visualized, 
hence several regression models are developed to predict 
the quality features using the data within the 3D spectral 
cube.

Supervised-Classification: Within the supervised 
classification, the input data is classified into different classes 
based on a representative set of samples known as training 
samples. Further, the discriminant function for classification 

is calculated based on a discriminant criterion defined 
based on the known sample category and prior knowledge. 
However, the power of supervised classification reduces with 
an increase in feature dimensions and limited availability of 
trained samples [44]. Hence, feature extraction techniques 
are often employed for dimensionality reduction-prior to 
supervised classification. In general, as presented in Table 6 
below, the support vector machine method, artificial neural 
network classification method, decision tree classification 
method, and maximum likelihood classification method are 
employed for supervised classification [20].

Unsupervised Classification: Besides, the unsupervised 
classification algorithms or methods are often employed to 
group pixels with similar spectral characteristics inherent in 
the image into unique clusters based on some predefined 
statistical criterion. Further, within the unsupervised 
classification, as there is no output variable to guide the 
learning process, the data is explored by algorithms to 
find patterns. In general, as presented in Table 7 below, 
the most common algorithms employed for unsupervised 
classification are K-Means Clustering, Iterative Self 
Organizing Method, etc. [46].

Table 4: Pre-processing methods. 

Averaging Used to reduce the thermal noise and smoothen the spectrum (Li et al.) [23].

Smoothing Carried out to reduce the noise levels (random variations in intensity) from spectral data without reducing the 

Normalization Used to correct the spectra affected by differences in optical path lengths.
Standard Normal 
Variate

Row-oriented transformation method that aids with the removal of scatter effects within the spectra through 
centering and scaling of each individual spectrum (Barnes et al.) [36].

Multiplicative Scatter 
Correction Used to reduce multiplicate problems or deviations caused by particle size and scattering (Li et al.) [23].

Derivatives Employed to remove overlapping peaks and baseline shifts resulting from the variation of particle sizes and 
instrumental conditions (Savitzky et al.) [35].

Transformation Used to separate noise from the spectra in the frequency domains through the decomposition of the original 
spectra into various frequency domains (Ravikanth et al.) [11].

Baseline correction Aims at removing the background noises from the spectral data.
Dimensionality 
Reduction

Band Selection and Orthogonal Transformation are generally used to reduce the redundancy by decorrelating the 
band images.

Nearest 
Neighbourhood 
Comparison

Used to eliminate the spikes (sudden rise followed by a sharp fall in the observed energy within a local region 
of a band) resulting from the abrupt behaviour of instrument, environment, or imperfections within the electronic 
circuitry (Qureshi et al.) [31].

Thresholding or 
Masking Used to segment the targeted object to eliminate redundant information (Toksöz et al.) [37].

Table 5: Feature extraction methods.

PCA Used to reduce redundant features, extract key features and key wavelengths within the 
Hyperspectral Imagery Feng et al., Qin et al.) [25,6].

Independent Component Analysis Generalized version of PCA, used to obtain the class information within different bands when 
applied to a full hyperspectral data set (Robila et al.) [39].

Minimum noise fraction To filter or remove the bands that generate a high nose (Lee et al.) [40].

Gabor Filter Used for edge detection, texture analysis, and feature extraction within Hyperspectral Imagery 
(Arora et al.) [41].

Grey level co-occurrence matrix A statistical method for texture analysis considering the spatial relationships of pixels 
(Sebastian et al.) [42].

Wavelet transform Employed to transform the image from the spatial domain into a time-frequency or wavelet 
domain instead of just a frequency domain

Wide Line Detection Used for edge detection to detect the presence of lines of a particular width “n” at a particular 
orientation “θ” (Huang et al.) [22].

number of spectral variables (Savitzky et al.) [35], (Wu. D et al.) [7], (Kamruzzaman et al.) [18].
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Spatial-spectral classification: Despite the fact, that 
supervised classification techniques are based on a set 
of representative samples for training, they often face 
problems due to the high dimensionality of the data and 
limited availability of training samples. Also, issues resulting 
from high intraclass variability hamper the power and 
effectiveness of their classification. Hence, Spatial spectral 
classifiers, that use both spatial and spectral information 
simultaneously are employed for the classification of 
Hyperspectral Imagery Data. Additionally, Deep learning 
includes a set of algorithms within machine learning that 
attempt to model high-level abstractions within data 
employing architectures composed of multiple non-
linear transformations. Also, Deep learning models such 
as Convolution Neural Networks, Deep Belief Networks 
fall under the category of Spatial-spectral classifiers 
[47,48]. Generally employed Spatial-spectral classifiers are 
presented in the table 8 below.

Regression Models: Likewise, Hyperspectral Regression 
models are formulated to predict the quality parameters 
within foods, however, the model formulations call out 
for a representative calibration set containing the spectra 

with corresponding accurate reference values for each of 
the quality parameters to be assessed. Generally employed 
Regression Models are presented in the Table 9 below.

Challenges: In contrast, the HSI systems or Innovative 
Hyperspectral Imaging Systems are often developed within 
laboratory or research environments, with slow-moving 
trays for food classification. However, to be employed within 
food chains for real-time classification, they need to match 
with the speed of high throughput conveyors to sort food 
analysing data within a hyperspectral cube of sizes around 1 
GB in less than a second [7,24].

Applications
Besides, food industry is one of the crucial areas where 
traceability, quality, and safety are of the highest importance 
to all the stakeholders within the supply chain including the 
consumers, as access to healthy and safe food is the need of 
the hour. Thus, ensuring both quality and safety of food is 
vital towards curtailing increasing morbidity, mortality, human 
suffering resulting from poor-quality foods and economic 
burden resulting from food losses, etc. across the world.

Hence, advanced analytical techniques have been developed 

Support Vector Machine 
Method

It employs a Kernel trick to transform the input data i.e. transformation from a non-linear decision surface to 
a linear equation in a higher number of dimension spaces and then uses the transformed data to identify an 
optimal boundary between the possible outcomes
(Mario et al.) [45].

Artificial neural network 
classification method

ANN’s are crude networks of neurons that mimic the neural structure  of the brain, trained iteratively with 
known records to adjust the connection weights within the hidden layer to convene the prediction
of the correct class label for classification of the real image data.

Decision Tree Method It mimics the tree structure, wherein a set of if-then rules are used to classify the input data records, the 
rules are learned sequentially using the training data set to convene classification of the real image data.
It employs the Bayes Classification, to classify each pixel within the Hyperspectral Imagery into a category 

with the highest probability.
K-nearest Neighbourhood Classifies data points through analysing its nearest neighbors from the training data set and assigns current 

data points to a class most commonly found among its neighbours.

(LDA)
It employs a linear combination of features or characteristics to  separate or discriminate data into classes 
or groups by reducing the dimensionality to maximize the separability between the classes
(Huang et al.) [22].

Partial Least Square 

DA)

Compromise between discriminant analysis and discriminant analysis on the principal components of the 
predictor variables to convene dimensionality reduction for classification of data within the
hyperspectral cube (Mario et al.) [45].

Table 6: Supervised classification methods.

K-Means Clustering Employs an iterative refinement method to define the final clustering based on the defined number of 
clusters (K).

Iterative Self    Organizing Method An alternative to K-Means, adjusts the number of clusters automatically
during the iterations by merging similar clusters or by splitting clusters with large standard deviations.

Table 7: Unsupervised classification methods.

Convolution Neural Networks (CNN) Formulated as a special class of Artificial Neural Networks, to aid with the extraction of deep and 
robust features for classification based on both spatial and spectral information.

Deep Belief Networks (DBN)

Formulated as a class of deep neural networks composed of multiple layers of latent variables, with 
connections established between the layers but not between the units within the  layers, employed 
to learn both spatial and spectral features from the Hyperspectral cube for superior classification 
performance.

Table 8: Spatial-spectral classifiers.

Maximum Likelihood  Method

Linear  Discriminant Analysis 

(PLS-Discriminant Analysis 
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to assess the composition, physicochemical properties, and 
sensory characteristics of food. However, the established 
techniques are often challenged with requirements for cost 
efficiency and environmental sustainability. Consequently, 
non-invasive technologies such as HSI have come into 
existence to meet the expectations for high speed and low-
cost quality assessments within food chains [50]. Further, 
the availability of both spatial and spectral data on food 
from HSI systems, makes them attractive to assess biological 
attributes such as bacteria counts, etc, physical attributes 
such as texture, color, marbling, tenderness, etc. and even 
chemical attributes such as fat content, moisture, protein 
content, pH, drip loss, etc. [22]. Besides, the information 
within the hyperspectral cube can be employed towards 
the assessment of  Microbiological contamination such as 
bacterial determination, fungal contamination, parasite 
infections, etc. Physical contamination and defects 
such as Fecal contamination within fruits, Fecal/Ingesta 
Contamination within the meat, detection of foreign 
materials, detection of defects, etc. and even chemical 
contamination such as adulteration of melamine, pesticide 
residues, etc. [25].

1. Microbiological contamination: Has been identified as 
one of the major determinants of 10%-50% of losses within 
agricultural production and the reason behind 42% of 
foodborne illnesses. Also, commonly employed techniques 
such as plate count, visual inspection, microscopy, 
Polymerase Chain Reaction (PCR), fluorescence, ultrasound, 
etc. for bacteria, parasite, pathogens, and fungal detection 
are found to be invasive/destructive, laboratory driven, 
expensive, labor-intensive, time-consuming, sometimes 
erroneous and dependent on culture and colony counting 
methods [25,19]. Thus, HSI is often employed towards 
bacterial determination, fungal contamination, and 

detection of parasite infections.

Bacterial determination:  Is  crucial towards  determining 
the presence and concentration of specific bacteria within 
foods to reduce the potential for spoilage, maintain the 
essential/correct product characteristics, and further to 
control safety hazards. Besides, the process of bacterial 
determination within food involves independent growth 
of different bacterial strains followed by the capture of HSI 
images of the cells from the isolated colonies to generate 
hyperspectral graphs of the respective bacterial cells for 
the reference library that is further employed along with 
the classification algorithms to determine the class of 
bacteria within the food [51]. Table 10 briefly summarizes 
the application of HSI systems for Bacterial Determination.

Fungal determination: Further, HSI stands out as one of 
the best alternatives towards the identification of different 
fungal species as it is capable of extracting a spectral 
signature for each of the species, thus the extracted spectral 
signature can be used to compare with the referential 
spectra to detect fungal contamination in food along with 
the determination of unknown fungal species [55]. Table 11 
briefly summarizes the application of HSI systems for Fungal 
Determination.

Parasite  infection: Besides,  HSI systems  be easily 
employed for parasite detection within foods as parasite 
presence leaves a distinctive spectral footprint within foods 
compared to normal foods [19]. Table 12 briefly summarizes 
the application of HSI systems for the detection of parasite 
infections.

2.   Physical    features    and    chemical    composition: As 
Hyperspectral imaging is based on light reflectance from the 
exposed food surfaces facilitating the capture of spectral 
signatures based on the characteristic wavelengths at 

Table 9: Regression models.

Multiple Linear Regressions-MLR Anticipates the result on a response variable using a few  illustrative factors through building 
a linear relationship between response variables and explanatory variables.

Principal Component Regression- PCR Based out of PCA, wherein the main spectral variation is defined by several orthogonal 
regression factors that are further used to develop estimation models.

Partial Least Square Regression 
(PLSR)

Aims at building linear models of prediction between spectral data and the values of the quality 
parameters obtained from the traditional measurements, such that the quality attributes can be 
predicted in the future directly from the measured spectra. It is often employed to predict a set of 
dependent variables from a set of independent
variables or predictors (Gamal et al.) [49].

Table 10: Application of HSI systems for bacterial determination.

Type of Bacteria  Assessed Type of Food Assessed Reference
Salmonella Chicken Meat PCA, ANN, PLS-DA, KNN, K-means Fu et al. [52]
Escherichia coli Fresh Vegetables PCA, ANN Siripatrawan et al. [53] 
Listeria Milk & Dairy PCA, K- Means, CNN Riggs DR et al. [54]

Table 11: Application of HSI systems for fungal determination.

Type of Fungi Assessed Type of Food Assessed Analytical Methods Employed Reference
Aspergillus Maize PCA, SVM Zhao et al. [56]
Fusarium Wheat Kernels LDA, Decision Tree Ropelewska et al. [57]
Penicillium Mandarins LDA, Decision Tree  (CART) Gómez-Sanchis et al. [58]

Analytical Methods Employed

k
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absorption peaks. Further, the strength and wavelength of 
absorption depend on the physical and chemical states of 
the food.

Thus, the hyperspectral images enable the determination 
of physical parameters of interest such as texture, color, 
tenderness, defects (bruises, chilling injuries, canker, and 
rottenness), foreign material presence, etc and chemical 
compositions parameters such as fat content, moisture, 
protein content, etc to be quantified based on the features 
extracted from the information captured within the 3D 
spectral cube [22, 23].

Physical   parameters: Besides,  knowledge  on physical 
parameters aids with determining the status of food 
quality facilitating efficient and reliable monitoring and 
control of important steps within the food chains to curb 
the degradation of food [50]. Further, texture identification 
within fruits aids with the classification of fruits into unripe, 
ripe, and overripe categories [61].

Also, prior knowledge on quality traits facilitates quality 
class prediction of food samples enabling segregation of 
good samples from defective samples characterized with 
bruises, chill injuries, rotten areas, etc. [25]. Table 13 briefly 
summarizes the application of HSI systems for physical 
parameter identification.

Chemical   composition:  As  the   hyperspectral  imagery 
combines both digital imaging and spectral information 
within each of the image pixels captured, it enables 
composition mapping within foods based on the differences 
within the spectral signatures of the chemical ingredients 
within the samples tested.

Thus, HSI is often employed to assess the chemical quality 
attributes within foods such as solid content, protein, 
moisture, etc. that also impact other sensory characteristics 
such as hardness, etc. [11]. Table 14 briefly summarizes 
the application of HSI systems for chemical composition 
assessment.

Challenges:  Although  HSI integrates both the traditional 
spectral and image techniques to characterize the intrinsic 
and extrinsic properties of foods, it calls out for sophisticated 
data mining techniques to realize the prediction of quality 
attributes [43]. Further, a commercial HSI system costs 
around $28,000 limiting its application within the food 
supply chain for quality assessments [10,71]. Even though, 
Hyperspectral Imagery Techniques aid with assessing the 
composition, physiochemical properties, and sensory 
characteristics of food, lack of commercial and robust 
instrumentation along with lack of academic training stand 
as potential barriers for the worldwide application of these 
technologies at the Industry level [50]. Besides, the potential 
of hyperspectral imaging for food quality and safety analysis 
within food processing and packaging is heavily influenced 
by the sensitivity and resolution of the cameras used and 
the data processing methods employed [22].

Recent developments
In contrast, technological advancements within data mining 
and the availability of advanced computing technology/
hardware platforms facilitated a reduction in computational 
times and expenses. Consequently, algorithms such as 
Nearest Neighbourhood, Smoothing, etc., got introduced 
as affordable solutions for noise reduction to cope up 

Table 12: Application of HSI systems for parasite detection.

Reference
Gadus morhua Fish Fillets PLS-DA Heia et al. [59]

Edotea magellanica Shell Free Cooked Clam Algorithms based on Clustering and 
Discriminant Methods Pablo et al. [60]

Physical Parameter Assessed Type of Food Assessed Analytical Methods Employed Reference
Texture Pear PLS-DA, LDA Rasool et al. [61]
Defects (carpel suture separation or 
hollowness) Pickling Cucumbers PLS-DA Ariana et al. [62]

Color and Tenderness Fresh Beef PCA & PLSR Gamal et al. [49]
Bruises Apples PLS-DA, Decision Tree (CART) Zu et al. [63]
Adulteration Minced lab with Minced Pork PLSR Mohammed et al. [64]
Marbling Beef DT Lía et al. [65]

Table 13: Application of HSI systems for physical parameter identification.

Type of Food Assessed Reference
Moisture Dehydrated Prawns PLSR Wu et al. [66]
pH Fresh Beef PCA & PLSR Gamal et al. [49]
Protein Peanuts PLSR Wang et al. [67]
Adulteration of Melamine Milk products PLSR Lim et al. [68]
Pesticide Residues of Dimethoate Spinach PCA, KNN, DT, LDA, Qi et al. [69]
Starch Content Adulterated fresh cheese PLSR Abel et al. [70]

Table 14: Application of HSI systems for chemical composition assessment.

Parasite  AssessedType of Type of Food Assessed Analytical Methods Employed

Chemical Constituent  Assessed Analytical Methods Employed
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with variations within the “signal to noise ratios” resulting 
from abrupt behaviour of instruments, environment, or 
imperfections within the electronic circuitry during image 
acquisition [31].

Also, the availability of high-resolution cameras, electronics, 
and optics facilitated the development of robust, low-cost 
HSI devices with high data quality and with low spatial and 
spectral distortions at around 2% of the cost of commercial 
devices that weigh about 300 g and characterized with a 
built-in capability to detect wavelengths within the range 
of 400 nm-1052 nm, with high spectral accuracy within 
controlled light as well as ambient light conditions, capable 
of generating 315 different wavebands with a spectral 
resolution up to 2.0698 nm and spatial resolution of 116 
pixels × 110 pixels providing the convenience for handling 
and usage within the Food Chains for Quality Assessments 
fostering large scale applicability and also aiding with the 
evaluation of new algorithms for Hyperspectral image 
analysis. Besides, the introduction of line-scan spectral 
imaging systems built to acquire hundreds of lines per 
second facilitated the adaptation of the systems for 
online inspections within food processing plants. Further, 
the market availability of Imaging spectrographs with 
capabilities to scan more than 1000 lines per second, 
continuous introduction of new hardware design concepts 
for building high-performance systems, and enhancements 
within computation capacities of computers facilitated 
the real-time handling and processing of large data files 
generated from spectral processing (6, 71].

Besides, multiple firms are currently working towards 
the development of softwares using computer vision and 
machine learning in partnership with food chains facilitating 
the acquisition of in-depth product specific knowledge 
needful to correlate the spectral information from the 
Hyperspectral Cube to the desired measurement metrics 
to convene the development of calibration standards for 
different food products [32].

Further, the development of web-based applications and 
Design of Experiments facilitated the automation of the 
procedures for selecting optimal pre-processing and post-
processing algorithms for Hyperspectral Image analysis 
convening the analysts to select the right algorithms for 
pre-processing and post-processing without trial and error 
methods [38,50].

Likewise, reduction in data computational times and 
expenses also facilitated the integration of different 
classification methods towards achieving the desired 
classification effects for real-time classification of different 
food products through analysis of large amounts of 
Hyperspectral data within time frames of the fraction of 
seconds [20]. Further, advancements within the Deep 
Learning methods/Machine Learning Algorithms/ensemble-
based learning systems convened the development of 
advanced and powerful tools for processing high dimensional 

Hyperspectral data facilitating the development and fine-
tuning of classification/prediction models within reasonable 
time frames [50,47]. Similarly, the development of low-
cost and portable hyperspectral scanners characterized by 
push-broom scanning facilitated rapid and non-invasive 
acquisition of reflectance spectra [30].

RESEARCH GAPS

Though the rapid developments within the hardware and 
software platforms aided the evolution of the HSI systems 
from a research platform into a useful tool for many practical 
applications within the food industry, there exists a need 
to further enhance the potential of the current systems 
with extensive research to widen the platform of image 
spectroscopy by introducing different spectral profiles 
such as NIR, Raman, Fluorescence Spectra, etc., in order 
to capture additional features for enhanced Food Quality 
and Safety assessment [25]. Further, interdisciplinary 
research within the Physics and Computer Science domains 
can be enhanced to foster constant price reduction of the 
components used within the HSI systems and enhancements 
of computation speeds towards the rapid adaptation of HSI 
systems for real-time food authentication [8].

Likewise, formalized methodologies can be developed for 
optimally selecting the spectral information to convene 
automatic on-line parasite detection within cooked foods 
based on the spectral features [60]. Similarly, there exists 
a need to integrate the existing feature selection methods 
to take advantage of the combined potential towards 
extracting intricate features within the food samples. 
Moreover, future works in this domain can concentrate on 
expanding the range of applicable food products [22].

Additionally, studies should also focus on defining the 
optimal wavelengths for each food and food constituents 
such that the HSI systems can be fine-tuned to obtain 
real-time information on features measured to facilitate 
decisions on compliance with food quality and safety 
standards [17]. Also, Innovative hyperspectral imaging 
systems (combing different spectral technologies such as 
Multispectral & Hyperspectral, etc.) can be further explored 
beyond laboratory levels towards assessing internal quality 
features of fruits and vegetables and the current processing 
methods can be further explored to drive superior results 
within inspection speeds and accuracies [24].

Although, research studies have demonstrated successful 
application of HSI systems for quick, effective, and non-
destructive classification of marbling in beef using few 
of the available samples, on-the-contrary there exists a 
need to evaluate all the marbling degrees contemplated 
within the Japanese standard BMS, through the collection 
of samples from different geographical areas, different 
breeds   and   different   feeding   regimes   [65].   Currently, 
the evaluation of biological contaminants within food is 
limited to solid foods, hence there exists a need to explore 
the evaluation of biological contaminants within liquid 
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foods [19]. Based on the literature it is evident that the HSI 
systems are good at classifying bruised specimens from 
good ones, but future works need to explore the degree of 

pricing levels for bruised foods [63]. Moreover, research 
on High-Performance Computing is the need of the hour, 
as it can serve as an efficient mechanism to cater to the 
huge computational requirements of the deep learning 
algorithms used for processing HSI data, as the acquisition 
ratios of imaging spectrometers and the volume of future 

real-time quality monitoring of food [47]. Similarly, the 
Hyperspectral image classification methods can be further 
explored towards classifying complicated images with high 
classification accuracies [20]. Further, partnerships between 
Industry and Academic Fraternity is the need of the hour 
to develop tailored systems to match with the unique 
application requirements at low costs to convene large 
scale implementations of the much capable HSI technology 
within the food Industry to extract its maximum potential 
towards enhancing the quality and safety and reducing the 
food losses within the whole chain. Besides, the generation 
of standardized practices and procedures for raw-data 
processing and feature classification would be needful in 
reducing the complexity of data-processing and feature 
identification within the foods.

CONCLUSION

The surveyed literature, aided to uncover the preconceived 
opinions on the costs associated with acquiring the 
hyperspectral images and the complexities related to pre-
processing and post-processing of data captured from 
hyperspectral images by providing the needed wisdom to 
gauge the benefits of deploying the full potential of the 
HSI systems for real-time monitoring of quality and safety 
of foods. Additionally, the review also provided substantial 
evidence relative to the recent developments and success 
stories concerning the application of the technology for 
assessing biological attributes such as bacteria counts, fungal 
contaminations, parasite infections, etc, physical attributes 
such as texture, color, marbling, tenderness, etc. and even 
chemical attributes such as fat content, moisture, protein 
content, pH, drip loss, etc. within the foods. Therefore, with 
the advent of low-cost equipment’s for data capture and 
systems with high computational power for data analysis, 
it is highly desirable to increasingly adopt the HSI systems 
for rapid, low cost and non-destructive assessment of foods 
towards curtailing increasing morbidity, mortality, human 
suffering resulting from poor-quality foods and economic 
burden resulting from food losses, etc. across the world.
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