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Abstract 
 

The uncertainty of predicting stock prices emanates pre-eminent concerns around the functionality of 
the stock market. The possibility of utilising Genetic Algorithms to forecast the momentum of stock 
price has been previously explored by many optimisation models that have subsequently addressed 
much of the scepticism. In this paper the author proposes a methodology based on Genetic 
Algorithms and individual data maximum likelihood estimation using logit model arguing that 
forecasting discrepancy can be rationalised by combined approximation of both the approaches. 
Thus this paper offers a methodological overture to further investigate the anomalies surrounding 
stock market. In the main, this paper attempts to provide a temporal dimension of the methods 
transposed on recurrent series of data over a fixed window conjecture. 
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INTRODUCTION 
 
Functional optimisation is the key underlying rationale of 
Genetic Logarithms. Irrespective of controlled variation 
Genetic algorithms eliminate uncertainty and imprecise 
momentum of any unfit system and derive representative 
degree of correctness. Genetic Algorithms were 
espoused by Holland (1975) during 70s envisaging the 
conceptual framework of Darwinian survival of fittest 
strategy. Genetic Algorithms from herein, referred as 
GAs throughout the text. The application of GAs in 
differentiating optimal value of multi-dimensional 
functions has been received high credence in 
evolutionary algorithms (Baricelli, 1962; Baker, 1985; 
Bramlette, 1991; Altenberg, 1994 and Civicioglu, 2012).  
 
 
GAs, Probability Density Function and Individual 
Data Maximum Likelihood Estimation 
  
Essentially, complex multi-parameter functions exhibit 
threshold maxima and minima, which GAs represents in 
terms bit strings in real numbers; for example, the value 
attributed at that point X( 0 П)  for a simple probability 
linear function f(y)= y+ X(0 П) can be evaluated either at 
the threshold minima or maxima. The fitness of a string 
is the function value at that point X (0 П) (Riolo, 1992). 
The process is very identical to distribution of a function 

of a random variable. 
If y is derived from x and the function represents 

linear probability distribution, the expression can be 
represented as the probability of that Y=y(x) equals the 
probability that X=x; i.e. when several values of y, then 
probability of Y is the sum of corresponding probabilities 
for x. 

Whereas, the random variable is a discreet 
transform of the variable y, all the mean value assumes 
respective interval, such as; 

Prob (Y=µ1) = P (-∞ <X≤ a), 
Prob (Y=µ2) = P (a≤ X≤ b), 
Prob (Y=µ3) = P (b≤ X≤ c)  
and the probability distribution continues up until n th  

term. 
If x is a continuous random variable with probability 

density function fx(x) and y =g(x) is a continuous 
monotonic function of x, the density of y is obtained by 
using the change of variable to find combine density 
function of y. 

Here 
 
                         b 

Prob (y ≤ b) = ∫   f (g-1
(y)) │g

-1’
(y) │dy 

                        -∞ 
rearranging it we can write, 
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                         b 

Prob (y ≤ b) = ∫   f y(y) dy 
                        -∞ 

The term g
-1’

(y) is the Jacobian of the transformation 
of x to y. Customarily the Jacobian is non-zero to 
assume non-zero value for y. The probability density of 
f(y) within the interval of discreet random variable 
reflects that GAs can be used in a same manner to 
identify any sequence following selection, crossover and 
mutation process, starting with a randomly generated 
population of n l-bit chromosomes, calculating the fitness 
of f(y) of each chromosome y in population and 
repeating that until n offspring have been created. Here 
the probability of selection becoming the increasing 
functions of dimensional fitness used in probability 
density function of f(y).  Now with crossover probability 
or crossover rate, i.e., Pc we can continue crossover to 
generate two forms of offsprings, whereas as crossovers 
do not produce identical patterns of their respective 
parents. At this point mutating the offsprings at each 
locus with subset probability of Pm and reiterating the 
process with the new chromosomes in the new 
population an optimal fitness value can be obtained. This 
process at the end results a highly fit chromosome giving 
the best expected value of the y. 

GA is highly effective to identify signals and 
eliminate noisy data set, particularly over a long period 
and lagged time series where unstructured nature and 
hidden relationship in variables are not correctly 
identified. Furthermore, least square approximation and 
probability density function do not always provide a 
robust calculation to establish the maxima threshold of 
parameters. GAs has unique attributes to address such 
anomalies. Packard (1990) utilising GAs established a 
predictive methodology to examine dynamic models. He 
envisaged that when a series of observation are 
generated from a dynamic system or process they 
usually form a set of pairs. The binary observation of 
such series can be represented as,  

{(x
→1

, y
1
),……..(x

→1
, y

N
)}, 

 
where x

→1
 = (x

i
1, x

i
2,….x

i
N) are nth number of 

independent variables and y
i
 is a dependent variable 

having probability of (1≤ i ≤N). 
In the uncertain and dynamic stock market share 

prices fluctuate due to multiple associative parameters. 
In such instance the independent variable might be the 
value of particular stock at a given time, i.e., x

→ 
= (x(t1), 

x(t2),…..x(tn)) whereas the dependent variable y= x( t n+k) 
representing value of stock at some t+k time. This 
illustrates a single vector representative of each 
dependent variable to independent variable, but in a 
dynamic system each dependent variable has their 
associated independent variables. Observations 
obtained in a specific space assign sets of conditions for 
every independent variable. Herein the condition C 
would be 

C= {(£ 2.5≤ Stock Price of Firm A on day 1) 

 
 
 
 
Λ (£3.0 ≤ Stock Price of Firm A on day 2≤ £ 3.2)  
Λ ( £ 2.7≤ Stock Price of Firm A on day 3≤ £3.0)}, 
where Λ is the logical operator equivalent of text 

‘AND’. At this point condition C represents a subset 
when three observed conditions are met with a 
probability density function f(x, C) ≈ (x

→1
, 2.5≤ Con≤ 3.2).  

These three conditions can be arranged in a matrix form 
to observe the determinant value of each probability, 
suppose the stock price on day 1 is denoted by  s1 and 
s2 for day 2 and so on, then the matrix form of each 
stock price variance and covariance would be; 

 
Var( s1)  Cov(s1 s2)  Cov( s1, s3) 
Cov(s1 s2))  Var(s2)  Cov(s2 s3) 
Cov(s1 s3)  Cov(s2 s3) Var(s3) 
 
Applying Gaussian elimination individual variance of 

stock price for a specific day can be calculated and each 
value can be used an approximation of stock price of 
that day to arrive at an optimal value specific to that 
date. In the above case searching the space condition 
that can return the subsets of data points whose 
dependent variable values would be close to uniform 
density distribution. Here GAs identify a condition set, 
where the set were followed by days on which the Firm 
A’s stock rises to approximate high of £ 3.0. This allows 
rationalising that if the conditions sustain, the prices will 
go up. The fitness of each individual condition C is 
calculated by running all the data points (x

→
,y) in the 

training set through C and for each x
→ 

that satisfies C, 
collecting corresponding y.  After that if the y values are 
close approximation of a certain value V, then condition 
C is a robust predictor of y. At this point x

→ 
also satisfies 

C.  Mayer and Packard (1992) proposed an alternate 
approach to identify regions of predictability in time 
series generated by Mackey-Glass equation (1977), i.e.,  

dx/dy={ax(t-τ)/(1+[x(t-τ)]c
}-bx(t) 

Whereas, x (t) is the independent variable at time t 
and a, b, c, τ are constants. If we are assuming different 
stock prices for different days we can have subsets of 
each 5 days or subsets of each 10 days for each 
corresponding y

i 
value say for example we investigating 

24 days of price change, then i= 24. 
Furthermore, they fixed the function of the condition 

as,  
f (C)= -log2(σ/ σ0)- α/ NC 
Where σ is the standard deviation of the set y

i
 for 

data point satisfying condition C, σ0 is the standard 
deviation of the distribution of y

i
 over entire data set, NC 

is the number of data points satisfying the condition C 
and α is the constant. Previously we have discussed that 
a matrix form of variance values can be employed to 
identify the best predictor approximation by using 
Gaussian elimination.  Furthermore the first term of the 
above function measures the amount of information in 
the distribution of y

i
 for all the data points satisfying 

conditions C, the second term represents the            
error variance in distribution. More the number of  points 



 
 
 
 
satisfying the conditions C, more the reliability of 
predictor and C is supposed to have higher fitness 
values. Mayer and Packard followed a sequence to 
reach at the best predictor approximation, such as; 
initialised the sample with random set of conditions C, 
calculating fitness of each subset satisfying conditions C, 
ranked the measures in terms of higher value, and 
discarded the lower fitness individuals and replaced 
them with new conditions C* obtained by applying 
crossover and mutation to remaining conditions C. They 
continued the sequence to find the ideal offsprings. In 
the stock market example this sequence will help to 
manifest a higher fitness value of the observed price at a 
given future time t.  

Mayer and Packard’s best predictor approximation 
exhibits close similarities with individual data maximum 
likelihood estimation. In individual data maximum 
likelihood estimation (Analytical discussion on individual 
data maximum likelihood estimation presented in this 
section has been cited from Greene (1990), probability 
distribution function has been represented as;  

Prob[ y*> 0] = Prob[β’x +ε> 0] 
                       = Prob[ε>- β’x]  
where y* = β’x + ε for the conditions y= 1 if y*> 0 
                                                             y= 0 if y* ≤ 0 
β’x is known as index function , here the assumption 

of unit variance is normalised and assumption of zero for 
threshold is likewise if model contains a constant term 
which we have in this case. Now if the distribution is 
systematic and normal as well as logistic, then  

Prob[y*> 0] = Prob[ε< β’x]  
                               = F (β’x) 
The model with probability F (β’xi) and each 

observation is sampled as individual draw from a 
Bernoulli distribution, i.e., binomial with one draw leads 
to joint probability or a likelihood function such as; 
Prob[ Y1=y1, Y2=y2,...Yn=yn] = ∏y=0{1- F (β’xi)} ∏y=1{ F 
(β’xi)}……………………………………………………....(1) 

Representing the probability function of RHS with L, 
we can rewrite, 
L= ∏i[ F (β’xi)]

yi
 [1- F (β’xi)]

1- yi 
………………………. .(2) 

This is the likelihood for sample of n observations. In 
GAs such joint probability function can be compared with 
conditions C subsets with different offsprings after 
crossover and repeated mutation. GAs identify sample of 
n observations that consists of a finite pool of individual 
data. Thus GAs and estimation with individual data treat 
each observation as a single parameter with binomial 
with one draw. In this instance Equation. (2) is denoted 
as the likelihood for a sample of n observations. Further 
extending it by obtaining logs; we get 
ln L = Σ [yi ln F (β’xi)+(1-yi)ln (1- F (β’xi))]……...…....(3) 

                i 
By converting it into first order condition for 

maximisation the model became 
∂ ln L/∂ β = Σ [ yi fi/ Fi   + (1-yi)  -fi/(1-Fi) ]xi= 0………(4) 
                     i 
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The model with probabilities F (β’xi) where subscript i 
denotes the density of distribution.  

As far as a logistic model is concerned we know,  
Prob[ Y=1] = e 

β’x
/ 1+ β’x =Λ(β’x)………………..……(5) 

which represents logistic distribution, where Λ 
represents logistic cumulative distribution function. The 
density function of a cumulative distribution is 
represented by 
dΛ[β’x]/ d(β’x) = e

β’x
/(1+e

β’x
)
2 

The above model equals to  
Λ(β’x) (1-Λ(β’x))……………………......………………...(6) 

In the instance of linear probability model the 
Equation.(4) would become highly nonlinear and 
requires further linearization as we are concerned about 
the individual estimation. A simpler approach to address 
this issue for a logit model is to insert both Equation.(5) 
and Equation.(6) into Equation.(4). After collapsing all 
three equations it gives, 

∂ ln L/∂ β = Σ (yi- Λi)xi……………………………..(7) 
                     i 

whereas, xi contains a constant term. Also in the 
terms of least square normal equations the term yi- Λi 
can be seen as a residual. However for normal 
distribution, the log likelihood is denoted by 
ln L = Σ ln(1-Фi)+ Σ ln Фi……………………………….(8) 
           y=0     y=1 

here Фi stands for standard normal density of i th 
term. 

Hence the first order conditions for maximisation of L 
are, 
∂ ln L/∂ β = Σ (-фi/ 1- Фi)xi + Σ (фi / Фi)xi ………...…(9) 
             y=0              y=1 

Therefore converting individual variables into first 
order log likelihood we can obtain effect of changes in 
these variables on the predicted probability. 

The author proposes that each individual variable 
would be converted by utilising Equation. (9) and would 
be used in GAs as chromosome syntax for any n 
variables to obtain an optimal solution. Each variable 
would have bitstrings length N, whereas a 1 at a position 
a means that variable is used in the network denoted by 
the bitstrings taken as chromosome syntax. The fitness 
value of for each bitstring B is weighted by training a 
neural network defining B for a number of times, i.e., 
mutation and crossover.  

During each training time, generated minimal error 
would be logged on test set. After N times of training the 
cumulative average of those minimal errors would be 
used to determine another fitness value. This process 
obtains higher fitness value for the lower error 
predictors. Once fitness values have been determined, 
those fitness values would be assigned and this would 
create a new sample having best survived offsprings 
replacing weaker off-springs of the previous sample.    

If at least two crossover operators would be used, 
any finite sample N would yield higher fitness value for 
each bitstrings. In this case we can select two bitstrings  
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Graph 1. Line Graph of Share Values over 24 days following 1
st
 mutation, 2

nd
 mutation and 3

rd
 mutation 

 
 
B1 and B2 and any two crossover sites at random. The 
first offspring B1*essentially inherits the part between the 
cross sites from B1 and the other parts from B2. Similarly 
the second offspring B2* inherits the part between cross 
sites from B2 and B1. Similarly the second crossover 
operator would also select two parents B1 and B2 
randomly.  

Further, a random number x [0, (x/2)] is generated 
form the crossover site. Now x times a string position p 
would be selected on a probabilistic assumption where 
every time the values of B1 and B2 at position p would be 
swapped. In this context only one mutation operator is 
suffice to generate optimal solution to N sample 
population. A parent is selected randomly assigning a 
sting position p so that value at position p is inverted for 
subsequent mutation operator if any is selected for 
further extension.  

This process can be repeated to achieve accuracy 
up to 99.9% interval confidence over n finite sample 
population. To examine the proposed method the author 
has selected 24 days stock price of a firm A (Stock 
prices were obtained from FT fact sheet.). Each variable 
were input into GAs crossover site as bitstrings, 
following a network training representing each one as 
formal neurons. Mainly a formal neuron is the basic 
element in the training network, represented by n-
dimensional vector [x1,….x24]

T
  with a constant 

component x0=1. The weighted sum of neurons is,  
w

T
x=w0+S1≤ i ≤n wixi,  

where x=[1,x1,…x24] and w=[w0,….w24]
T
 .  

Here w is the weighted vector which is stored in 
each neurons. Such neurons are calcified as n-
dimensional neurons assuming two different vector 
values, i.e., y=1 for class 1 vector and y=-1 for class two 
vector. Interestingly GAs produced only 4.67% of type I 
error and 0.09% of type II error. However the 
significance level was decided at 5% level and the model 
indicated high statistical significance.  

Following 1
st
, 2

nd
 and 3

rd
 mutation it was observed that 

the fluctuation of price is not too distributed rather 
parsimonious. The graph1 represents three nodes of 
mutations. 

Furthermore, the chart indicates that following three 
subsequent mutations and taking each surviving best 
price over 24 days window the variance in 1

st
, 2

nd
 and 3

rd
 

mutation does not differ significantly. This leaves enough 
reason to argue that the similarities might have stemmed 
from the effect of each survival price which must be best 
in their respective categories. This somehow underpins 
that in each sub-window the mutation prices serve best 
during that temporal period. A follow-up mutation would 
reveal the similar trend. Moreover the plausibility behind 
the causality is another concern of this approach. The 
volatility of stock market could be the reason to infer the 
causality. However many other variables, i.e., analyst 
coverage, market information and index adjustment 
equally affect the market in deciding the causal trend.  

To investigate the causality of variance consistency 
a Pareto graph was generated which is presented below 
in Graph 2. 

Following a three tier mutation process and stacking 
each day share price over subsequent day taking the 
final day share price s24 as the maximum share on 
closing date the author noticed a very flat and similar 
cumulative variance over the 24 days window. Further, 
counting on day 12

th
 share price assuming it as the 

hypothetical price of mean day of the share sequence 
the chat indicates that 23.05 % of reasoning behind the 
share price could be the cause of 76.95 % anomalies, 
though the count percentage maintains a consistency. 

However to understand the effect of the higher 
anomalies a time series cross correlation was computed 
(See Graph 3), which evidently indicates that prices on 
each nodes, i.e., s1, s12 and s24 do exist in a nonlinear 
fashion. Interestingly the mid node value is mostly 
negative identifying a periodic time lag over 24days.  
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Graph 2. Pareto graph of Share Prices over 24 days following 1
st
 mutation, 2

nd
 mutation 

and 3
rd

 mutation 
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Graph 3. Time Series Cross Correlation between s1, s12 and s24 
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Chart 1. Spectral Frequency of Share price on Day one 
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Chart 2. Spectral Frequency of Share price on Day 12 

 
 
 
Furthermore a spectral frequency (Refer  to chart 1 and 
2) was generated to provide a straight forward view of 
the day 1 and day12 share values. This indeed explains 
a higher lower bound value than higher values. It is 
noteworthy that lower bounds are extended over longer 
periods.  

CONCLUSION 
 
The certainty of prediction adopting GAs within 
economic and financial systems has been resourcefully 
acknowledged,  particularly   in   parallelisation,   relaxed 
function evaluation and fuzzy sets. This article advances 



 
 
 
 
that it can be competently used along with individual 
data estimation to predict optimal solution of any finite 
set of population; such as stock prices over a narrow 
window. However further empirical investigation is 
imperative to examine the effectiveness of this proposed 
method. The connotation of effectiveness should be 
thoroughly scrutinised in order to report the significance 
of this methodology.  
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