

Short Communication

Fundamental Processes and Functional Mechanisms in Plant Physiology

Elena Markovic

University of Belgrade Botanical Research Center, Belgrade, Serbia
E-mail: elena.markovic@ubbrs.eu

Received: 04-JUN-2025, Manuscript No. IRJPS-25-177127; **Editor assigned:** 06-JUN-2025, PreQC No. IRJPS-25-177127(PQ); **Reviewed:** 20-JUN-2025, QCNo.IRJPS-25-177127; **Revised:** 24-JUN-2025, Manuscript No. IRJPS-25-177127 (R); **Published:** 26-JUN-2025

ABSTRACT

Plant physiology is the study of the functional processes that enable plants to grow, develop, and adapt to their environment. It examines fundamental mechanisms such as photosynthesis, respiration, water transport, mineral nutrition, hormone regulation, and stress responses. These processes allow plants—sessile and autotrophic organisms—to efficiently capture energy, acquire nutrients, and maintain cellular homeostasis despite environmental challenges. Advances in molecular biology, imaging techniques, and systems-level analysis have expanded our understanding of how plant cells perceive signals, regulate gene expression, and coordinate physiological responses. Modern plant physiology integrates biochemical, molecular, and ecological approaches to explain how plants respond to light, temperature, water availability, pathogens, and soil conditions. Its applications are essential in crop improvement, sustainable agriculture, and ecosystem management. By understanding the physiological basis of plant performance, researchers can develop strategies to enhance plant productivity and resilience in a rapidly changing global climate.

Keywords: Plant Physiology, Photosynthesis, Respiration, Transpiration, Mineral Nutrition, Plant Hormones, Stress Responses, Water Relations, Signal Transduction, Growth Regulation.

INTRODUCTION

Plant physiology is a central discipline in plant biology that explains how plants function at cellular, tissue, and whole-organism levels. It focuses on understanding the biochemical and biophysical processes that allow plants to survive, reproduce, and interact with their environment. Because plants are primary producers, their physiology forms the basis of all terrestrial ecosystems.

One of the most fundamental processes in plant physiology is photosynthesis, through which plants convert light energy into chemical energy. This process occurs in chloroplasts and provides the carbohydrates necessary for growth, metabolism, and energy transfer within the plant body. The efficiency of photosynthesis influences plant productivity and global carbon cycling.

Respiration is another critical physiological process that releases energy from stored carbohydrates. Through mitochondrial pathways, plants generate ATP to fuel cellular activities. Respiration interacts

Citation: Elena Markovic (2025). Fundamental Processes and Functional Mechanisms in Plant Physiology .IRJPS. 16: 19.

closely with photosynthesis, balancing energy capture and energy use to support optimal growth (Taiz et al., 2023).

Water relations are central to plant physiology. Processes such as osmosis, transpiration, and water transport through xylem enable plants to maintain turgor pressure, nutrient uptake, and temperature regulation. The cohesion-tension mechanism explains how water moves from roots to leaves against gravity. Mineral nutrition plays a vital role in plant metabolic processes. Essential macro- and micronutrients contribute to enzyme activity, structural integrity, and electron transport. Understanding nutrient uptake and deficiency symptoms helps improve soil management and crop health.

Plant hormones act as chemical messengers that regulate growth, development, and stress responses. Auxins, gibberellins, cytokinins, ethylene, and abscisic acid coordinate processes such as cell elongation, dormancy, flowering, and fruit ripening. Hormonal signaling networks integrate environmental cues with developmental programs. Signal transduction pathways allow plants to perceive and respond to their surroundings. Light, temperature, mechanical stimuli, pathogens, and water availability trigger signaling cascades that alter gene expression and metabolic activity. These responses enable plants to cope with fluctuating environmental conditions (Meyer et al., 1960).

Plant physiology also examines stress responses, including drought tolerance, salinity resistance, heat stress management, and pathogen defense. Plants activate protective mechanisms such as osmolyte accumulation, antioxidant production, and stress hormone synthesis to maintain cellular stability (Mostofa et al., 2022). Modern plant physiology incorporates molecular and genomic approaches to reveal regulatory genes, protein interactions, and metabolic pathways. High-throughput sequencing and imaging technologies provide deeper insights into how physiological processes are controlled at the molecular level (Verma et al., 2024).

Plant physiology has important applications in agriculture, environmental science, and biotechnology. It supports the development of high-yielding, stress-resistant crops, sustainable farming practices, and improved resource use efficiency. As global climate challenges intensify, physiological research becomes essential for ensuring food security and ecosystem resilience (Jing et al., 2024).

CONCLUSION

Plant physiology forms the foundation of understanding how plants grow, develop, and interact with their environment. Through the study of photosynthesis, respiration, water relations, nutrient uptake, hormone signaling, and stress responses, researchers gain insights into the essential processes that sustain plant life. Advances in molecular techniques and physiological modeling continue to deepen our understanding of these mechanisms, supporting innovations in crop improvement, conservation, and sustainable agriculture. As environmental challenges increase, plant physiology provides critical knowledge for enhancing plant resilience, protecting ecosystems, and ensuring global food productivity.

REFERENCES

Jing, T., Li, J., He, Y., Shankar, A., Saxena, A., Tiwari, A., ... & Awasthi, M. K. (2024). Role of calcium nutrition in plant Physiology: Advances in research and insights into acidic soil conditions-A comprehensive review. *Plant Physiol. Biochem.* 210, 108602.

Meyer, B. S., Anderson, D. B., & Böhning, R. H. (1960). Introduction to plant physiology.

Mostofa, M. G., Rahman, M. M., Ghosh, T. K., Kabir, A. H., Abdelrahman, M., Khan, M. A. R., ... & Tran, L. S. P. (2022). Potassium in plant physiological adaptation to abiotic stresses. *Plant Physiol. Biochem.* 186, 279-289.

Taiz, L., Møller, I. M., Murphy, A., & Zeiger, E. (2023). Plant physiology and development. (No Title).

Verma, S. K., Kumar, P., Mishra, A., Khare, R., & Singh, D. (2024). Green nanotechnology: illuminating the effects of bio-based nanoparticles on plant physiology. *Sustain. Mater. Technol.* 1(1), 1.