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Abstract 

 

African pearwood (Baillonella toxisperma Pierre) is one of the biggest trees of the Central Africa 
rainforest. It offers number of uses but the species is classified as vulnerable. This study is conducted 
in view of its domestication via somatic embryogenesis. Here we analyzed the variations of free amino 
acids, soluble and ionically bound proteins during different stages of somatic embryogenesis in half-
strength Murashige and Skoog and in half-strength Driver and Kuniyuki media. In both media 
respectively, the endogenous levels of free amino acids, soluble and ionically bound proteins 
respectively were low in embryogenic calli [(0.30, 0.72); (0.15, 0.72); (0.09, 0.35) mg/g FM ] then 
increased significantly in globular embryos [(1.60, 0.93); (0.39, 5.35); (0.17, 1.26) mg/g FM)]. Finally, the 
levels of all these somatic embryogenesis markers decreased significantly in bipolar embryos [(1.41, 
0.54); (0.24, 1.89); (0.20, 0.84) mg/g FM] excepted in MS/2, in which ionically bound proteins content 
increased to 0.20 mg/g FM. Free amino acids, soluble and ionically bound proteins amounts may play a 
key role in globular somatic embryos formation, while bipolar somatic embryos differentiation could be 
associated to specific types of those biochemical markers. 
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INTRODUCTION 
 
African pearwood, Baillonella toxisperma Pierre 
(Sapotaceae), is a species found in the Central Africa 
rainforest. It is among the biggest trees of the continent 
and is distributed from southern of Nigeria to the 
Democratic Republic of Congo (Vivien et al., 1985). The 
plant is sought by the forest operators for the quality of its 
wood as well as by the local populations for its fruits and 
seeds, from which quality oil can be extracted. Indeed, B. 
toxisperma wood exploitation is estimated at a rate of 100 
000 m³ per year (ATIBT, 2006). Data concerning fruit 
harvestings remain much rarer (Vermeulen et al., 2005).  

 
Abbreviations 
 
 MS/2 (Half-strength Murashige and Skoog medium); DKW/2 
(Half-strength Driver and Kuniyuki medium; EC (Embryogenic 
calli); GSE (Globular Somatic Embryos); BSE (Bipolar Somatic 
Embryos); FM (Fresh Weight Matter). 
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This double lust could cause a depletion of the species in 
a medium-term (Debroux, 1998). The species is 
classified as vulnerable and threatened of extinction in its 
ecological systems (Newton et al., 2003). Its 
domestication is therefore essential and an adequate 
method of plantlets multiplication is necessary. 

Plants regeneration via somatic embryogenesis offers 
a particular advantage which consists to yield new plants 
with more stable genome (Roja Rani et al., 2005). This 
technique is an alternative pathway for the propagation of 
African pearwood (Sanonne et al., 2012). Somatic 
embryo development reposed on biochemical and 
physiological principles that are essential to be 
understood (Silveira et al., 2008). 

Amino acids are the principal providers of organic 
nitrogens incorporated by all plants during their 
metabolism. The endogenous contents of several 
important amino acids increased throughout somatic 
embryogenesis process (Sen et al., 2002) however it was 
observed a rise in globular and torpedo stages and a fall 
in    germinating      embryos    (Joy et al., 1996).    Some  



Sanonne et al.  77 
 
 
 

 

Figure 1. Major stages of somatic embryogenesis in Baillonella toxisperma 

indicated by arrows: a=Embryogenic calli, b=Globular somatic embryos, 
C=Bipolar somatic embryos, bar=1cm,  

c 

b 

a 

 
 
exogenous amino acids were used as in vitro 
supplements (Niemenak et al., 2008). 

The contents of soluble proteins enhanced gradually 
during embryo development and attain their maximum 
levels at the last mature stage (Silveira et al., 2004). The 
accumulation of proteins was underlined as a  
biochemical marker of efficient somatic embryo 
development (Griga et al., 2007). The bound proteins are 
mainly known to have structural roles in this 
developmental process (Showalter, 2001). 

The aim of this study is to analyze the role of free 
amino acids, soluble and ionically bound proteins at 
different stages of somatic embryogenesis in African 
pearwood. 
 
MATERIAL AND METHODS 
 
Plant material 
 
The contents of amino acids, soluble and bound proteins 
were measured in Embryogenic calli (EC), Globular 
Somatic Embryos (GSE) and Bipolar Somatic Embryos 
(BSE). They were obtained indirectly from leaf explants of 
about 2 weeks old after bud opening of plantlets grown 
from germinating seeds of Baillonella toxisperma. 
Disinfection and seeding were done using Sanonne et al. 
(2012) method. 
 
Culture media preparation and obtainment of 
different stages of cultures 
 
The culture media used were: (1) half strength solid 
Murashige and Skoog (1962) mineral salts (MS/2) 

containing 4.5% sucrose, 0.6% agar and 1 ml/l Morel and 
Wetmore (1951) vitamins; and (2) half strength solid 
Driver and Kuniyuki (1984) mineral salts (DKW/2) 
containing 250 mg/l glutamine, 100 mg/l myoinositol, 20 
g/l glucose, 25 µg/l TDZ, 2 g/l phytagel and 1 ml/l of DKW 
vitamin solution. 

Embryogenic Calli (Figure 1a) were inducted by 
culturing leaf explants for 28 days in MS/2 or DKW/2 
media supplemented with 0.5 mg/l of 2.4-
dihlorophenoxiacetic acid (2.4-D) and 0.5 mg/l 
benzylaminopurine (BAP). To induce the formation of 
Globular Somatic Embryos (Figure 1b), calli were 
transferred for 60 days in the same enriched MS/2 or 
DKW/2 basal media containing 2 or 3 mg/l of 2.4-D. The 
Globular Somatic Embryos were subcultured over 97 
days in the same media containing 0.5 or 1 mg/l 2.4-D 
supplemented with 0.5 mg/l abscisic acid (ABA) for 
differentiation and maturation of Bipolar Somatic 
Embryos (Figure 1c). 

All culture media with pH adjusted to 5.6 were 
sterilized by autoclaving at 115°C/30min. The culture 
room temperature was 25 ± 2°C under 40 µmol/m

2
/s  

white fluorescent light and 16 h lighting photoperiod. 
 
 
Extraction and analysis of amino acids 
 
The fresh material (1g) constituted of EC, GSE or BSE 
was ground in 5 ml of ethanol 80°. Amino acids were then 
extracted using reflux technique in boiling ethanol for 30 
min. After decanting, the supernatant was filtered with 
Wattman paper n°3. The filtrate was collected and the 
residual    was    used   to   repeat the extraction. The two  
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Figure 2. Variations of free amino acids contents following the different stages of somatic 
embryogenesis in MS/2. The same letters indicate no significant difference (LSD multiple 
range test, p = 0.05). EC (Embryogenic calli), GSE (Globular Somatic Embryos), BSE (Bipolar 
Somatic Embryos). 
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mixed filtrates constituted the raw extract of amino acids 
that were measured using ninhydrin method (Yemm and 
Cooking, 1955). The absorbance of purplish bruise 
complex was read at 570 nm. The standard curve was 
established using 0.1 mg/ml of glycine. 
 
Extraction and analysis of soluble and bound 
proteins 
 
Fresh material (1g) like previously was ground in 2 ml 
cold Tris-maleate buffer 0.05M, pH 7 containing mannitol 
0.5M. The homogenate was incubated at 4 °C for 20 min 
and centrifuged at 6000 gn for 40 min. The supernatant 
was collected and constituted the soluble fraction of 
proteins. The residual was retaken two times in the 
previous buffer for 20 min with at each time centrifugation 
at 6000 gn for 20 min and elimination of the supernatant. 
The residual was mixed and incubated in 1 ml cold Tris-
maleate buffer 0.01M, pH 7 containing sodium chloride 
1M at 4 °C during 40 min then centrifuged at 6000 gn for 
40 min. The supernatant was collected and constituted 
the ionically bound fraction of proteins. The quantity of 
proteins was determined according to Bradford (1976). 
The absorbance of the blue complex was read at 595 nm 
against the white. The standard curve was obtained using 
bovine albumin serum 1 mg/ml. 
 
Data analysis 
 
After statistically significant difference between average 
contents of biochemical markers globally obtained using 
ANOVA (P≤ 0.05), LSD multiple range tests (P=0.05) was 

used to compare these means to each other. The 
analyses were performed using “Statgraphics plus” 
software (5.0 version). 
 
RESULTS 
 
Changes in amino acids content 
 
In MS/2 medium, the low amino acids levels in 
embryogenic calli (0.30 mg/g FM) increased significantly 
(p = 0.05) in globular and bipolar somatic embryos with 
average levels of 1.60 and 1.41 mg/g FM respectively 
(Figure 2). 
      Amino acids contents in medium DKW/2 also showed 
significant variations between the different stages of 
cultures. In embryogenic calli, amino acid content was 
twice that observed on MS/2 medium i.e. 0.72 mg/g FM. 
In globular somatic embryos, a significant increase was 
observed in amino acid levels compared to the previous 
step with an average value of 0.93 mg/g FM. At bipolar 
somatic embryos stage, there was a significant decrease 
in amino acid levels (0.54 mg/g FM) compared to the 
quantities obtained previously (Figure 3). 
 
 
Changes in soluble proteins content 
 
In MS/2, the contents of soluble proteins varied 
significantly (p = 0.05) following development stages. The 
minimal quantity (0.15 mg/g FM) was obtained in 
embryogenic calli. From this initial stage, soluble proteins 
amounts increased significantly (p = 0.05) in the two next  
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Figure 3. Variations of the contents of free amino acids following the different stages of somatic embryogenesis in 
DKW/2. The same letters indicate no significant difference (LSD multiple range test, p = 0.05). EC (Embryogenic 
calli), GSE (Globular Somatic Embryos), BSE (Bipolar Somatic Embryos). 
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Figure 4. Variations of soluble proteins contents following the different stages of somatic embryogenesis in MS/2. 
The same letters indicate no significant difference (LSD multiple range test, p = 0.05). EC (Embryogenic 
calli), GSE (Globular Somatic Embryos), BSE (Bipolar Somatic Embryos). 
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steps with means of 0.39 mg/g FM and 0.24 mg/g FM 
respectively in globular and bipolar somatic embryos 
stages (Figure 4). 
At each stage of development, the amounts of soluble 
proteins were higher in DKW/2 than MS/2. However, a 
similar behavior was observed that is a low level (0.72 
mg/g FM) in embryogenic calli step, an increase in 
globular embryos stage (5.35 mg/g FM) and a decrease 
in bipolar embryos stage (1.89 mg/g FM) (Figure 5). 
 

Changes in bound proteins content 
 
In MS/2, the ionically bound proteins to walls and 
membranes varied in different steps of somatic 
embryogenesis. In embryogenic calli step, ionically bound 
protein content was 0.09 mg/g FM. In globular embryo 
stage, its amounts increased significantly compared to 
the previous step to 0.17 mg/g FM. In bipolar embryos, 
the highest ionically bound protein content of 0.20 mg/g 
FM has been recorded (Figure 6). 
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Figure 5. Variations of soluble proteins contents following the different stages of somatic embryogenesis in 
DKW/2. The same letters indicate no significant difference (LSD multiple range test, p = 0.05). EC 
(Embryogenic calli), GSE (Globular Somatic Embryos), BSE (Bipolar Somatic Embryos). 
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Figure 6. Variations of the contents of ionically bound proteins following the different stages of somatic 
embryogenesis in MS/2. The same letters indicate no significant difference (LSD multiple range test, p = 0.05). EC 
(Embryogenic calli), GSE (Globular Somatic Embryos), BSE (Bipolar Somatic Embryos). 
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        Initially in embryogenic calli, ionically bound proteins 
content was low in DKW/2 (0.35 mg/g FM). It increased 
significantly in the next two steps. In globular embryos, 
there was an accumulation with a mean content of 1.26 
mg/g FM. In bipolar embryos stage, bound proteins levels 
decreased significantly compared to the previous stage at 
0.84 mg/g FM (Figure 7). 

DISCUSSION 
 
Endogenous levels of amino acids were evaluated in this 
study. It was reported that they play a key role in 
embryos development (Merkle et al., 1995). Among the 
factors that modulate biochemical and physiological 
processes of somatic and zygotic embryogenesis, amino  
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Figure 7. Variations of the contents of ionically bound proteins following the different stages of somatic 
embryogenesis in DKW/2. The same letters indicate no significant difference (LSD multiple range test, p = 
0.05). EC (Embryogenic calli), GSE (Globular Somatic Embryos), BSE (Bipolar Somatic Embryos). 
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acids represent the first step in nitrogen assimilation 
(Ortiz-Lopez et al., 2000). In MS/2 medium, free amino 
acids contents was low in embryogenic calli and then 
increased significantly during globular and bipolar 
embryos formation. These results are similar to those 
obtained in Pinus patula (Malabadi and van Staden, 
2005) and in Theobroma cacao (Niemenak et al., 2008). 
In the last two stages of embryo development, there was 
no significant difference between the levels of amino 
acids. In DKW/2 medium, the same behavior in terms of 
changes in amino acid levels for the first two stages was 
observed, that is lower in embryogenic calli than in 
globular embryos. At bipolar embryos stage, there was a 
significant drop of amino acids level. A decrease in the 
levels of amino acids from globular embryos stage was 
reported in Acca sellowiana (Booz et al., 2009). There 
was in this case, an extensive mobilization of amino acids 
in the synthesis of storage proteins (Santa-Catarina et al., 
2006). However, some specific analyzes should be done 
to determine the roles of specific amino acids. In fact, 
studies have shown that certain amino acids may be 
more efficient than others in this process (Garin et al., 
2000; Booz et al., 2009). 

There are several studies on the biosynthesis and 
accumulation of soluble proteins during embryogenesis 
process. In Baillonella toxisperma, the amounts of soluble 
proteins were low in embryogenic calli stage and 
increased significantly in globular and bipolar embryos 
stages in MS/2 as well as in DKW/2 media. The similar 
variation was reported in Pisum sativum (Griga et al., 
2007). However, in both types of media, the soluble 
protein contents dropped in bipolar embryos stages 

compared to their contents in globular embryos. That 
observation was the opposite reverse of that of Silveira et 
al. (2008) and Cangahuala-Inocente et al. (2009) who 
noted a gradual increase in the levels of soluble proteins 
from globular to cotyledonary embryos stages in 
Araucaria angustifolia and Acca sellowiana respectively. 
Indeed, it has been found that the process of histological 
differentiation of embryos is closely associated with 
changes in proteins, carbohydrates and lipids synthesis 
and mobilization (Griga et al., 2007; Cangahuala-
Inocente et al., 2009). In general, a progressive 
accumulation of proteins is observed during embryo 
development (Sallandrouze et al., 2002). These 
substances whose levels vary during different stages of 
development of cell cultures are involved in some 
transduction signals or are used as substrates or 
regulators of growth and morphogenesis (Lulsdorf, 1992; 
Jimenez, 2001). 

The variations of ionically bound proteins were 
studied. In embryogenic calli steps their quantities were 
low. The bound proteins as ionic or covalent to walls and 
membranes which include mainly HRGPs 
(hydroxyproline-rich glycoproteins) or extensins, AGPs 
(arabinogalactan proteins), GRPs (glycine-rich proteins) 
and PRPs (proline-rich proteins) play a structural role 
(Cassab, 1998). Therefore, we can assume that cells 
were still young and the formation of their walls and 
membranes were not yet complete. Cassab and Varner 
(1998) reported that in the early stages of development of 
zygotic embryos, it is impossible to detect extensin 
whose role is to promote extensibility of walls while it is 
highly concentrated in embryos of mature seeds. Ionically  
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bound proteins levels increased significantly in globular 
and bipolar stages, which may be associated with 
progressive maturation of embryos. 

This study revealed that in MS/2 as well as in DKW/2 
media, endogenous levels of free amino acids, soluble 
and ionically bound proteins were low in embryogenic 
calli then increased significantly in globular embryos. The 
levels of all these somatic embryogenesis markers 
decreased significantly in bipolar embryos excepted in 
MS/2, in which ionically bound proteins content remained 
high. 
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