B

&__-—-E\ :

International Research Journal of Engineering Science, Technology and Innovation (IRJESTI)
(ISSN2315-5663) Vol. 3(4) pp. 35-42, September 2014

DOI: http:/dx.doi.org/10.14303/irjesti.2014.068

=
T
&
N3
(=)

%o, >
X
73l Reseat®

Review

L) Available online http://www.interesjournals.org/IRJESTI
4 Copyright © 2014 International Research Journals

Feynman propagator, ermakov-lewis invariant and
bohmian trajectories for the logarithmic nonlinear
schrodinger-nassar equation

"José Maria Filardo Bassalo, 2Antonio Boulhosa Nassar and *Mauro Sérgio Dorsa Cattani

'Academia Paraense de Ciéncias, 66035-400, Belém,PA *Extension Program-Department of Sciences, University of
California, Los Angeles, California 90024 ®Instituto de Fisica da USP, 05389-970, Sao Paulo, SP

*Corresponding authors e-mail: jmfbassalo@gmail.com

Abstract

In this paper we study the Feynman Propagator, the Ermakov-Lewis invariant and the Bohmian
Trajectories for the Logarithmic Nonlinear Schrédinger-Nassar Equation, linearized along a classical
trajectory, by using the quantum mechanical formalism of the de Broglie-Bohm.

Keywords:De Broglie-Bohm Quantum Mechanics; Feynman Propagator, Ermakov-Lewis Invariant, Bohmian
Trajectory; Logarithmic Nonlinear Schrédinger-Nassar Equation.

PACS 03.65 - Quantum Mechanics

INTRODUCTION

The de Broglie-Bohm Quantum Mechanics and the
Quantum Bohmian Trajectory

In 1948,(Feynman,1948) R. P. Feynman formulated the
following principle of minimum action for the quantum
mechanics:

The transition amplitude between the states [ a > and | b
> of a quantum-mechanical system is given by the sum of
the elementary contributions, one for each trajectory
passing by | a > at the time ta and by | b > at the time tb'

Each one of these contributions have the same modulus,

but its phase is the classical action Sc[ for each

trajectory. This principle is represented by the following
expression known as the "Feynman propagator”:

Error!, (1.1)
where S(b, a) is the classical action given by:

S(b,a) = L”’L(x,x,t)dt L (1.2)

L(x, x, f) is the Lagrangean and D x(i) is the Feynman’s
Measurement. It indicates that we must perform the

integration taking into account all the ways connecting
the states |a>and | b>.

The eq. (1.1) which defines K(b, a) is called path integral
or Feynman integral and the Schrddinger wavefunction
W(x, 1) of any physical system is given by (we indicate the
initial position and initial time by X, and to’ respectively):(

Feynman and Hibbs,1965)

Error!, (1.3)
with the quantum causality condition:( Bernstein,1985)

Error!. (1.4)

The Logarithmic Nonlinear

Equation

Schrodinger-Nassar

In 2013,(Nassar,2013) A. Nassar proposed a logarithmic
nonlinear Schrédinger equation to represent time
dependent physical systems. In this article, let us
considerer this same equation with a potential energy
V(x, {). Then, we have:

Error!

Error!, (2.1)
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where W(x, 1) is a wave function which describes a given
system and k caracterizes the resolution of the
measurement. The last term in the eq. (2.1) arises from
the requirement that the integration of this equation with
respect to the variable x under the condition that for a
particle the expectation value of the energy < E(f) >
defined as:

Error!, (2.2

must be equal to the expectation values of the kinetic and
potential energies.

The Wave Packet of the Logarithmic Nonlinear
Schrédinger-Nassar Equation

Writting the wave function W(x, f) in the polar form
defined by the Madelung-Bohm transformation:(
Madelung,1926, Bohm, 1952)

Wix, t)=o(x, ) xexp[iS(x, t)], (2.1.1.1)

where ¢(x, t) will be defined in what follows.

Calculating the derivatives temporal and spatial of
(2.1.1.1), we get:(Bassalo et al.,(2002)

Error!, (2.1.1.2a)

Error!. (2.1.1.2b)

Now, substituting the egs. (2.1.1.2a,b) into the eq. (2.1)
and remembering that exp [i S] is common factor, we
have:

Error!
Error!
F(Vx = ink[n (@2 —<tn(@>>]) 0. (21.1.3)
Multiplying the eq. (2.1.1.3) by Error! and separating the
real and imaginary parts, results:

a) imaginary part

Error!, (2.1.1.4)
b) real part
Error!. (2.1.1.5)

Dynamics of the Logarithmic Nonlinear Schrédinger-
Nassar Equation

Now, let us see the correlation between the expressions
(2.1.1.4-5) and the traditional equations of the ldeal Fluid
Dynamics (See books on the Fluid Mechanics, for
instance: Streeter and Debler,1966, Coimbra,1967,
Landau and Lifshitz 1969, Bassalo 1973, Cattani
1990/2005) a) Continuity Equation, b) Euler’s equation.
To do this let us perform the following correspondences:
Quantum density probability:

0| =¥ (LN¥(x1) o

px=¢*(x1)
(2.1.2.1a,b)

h 9S(x,1)

m  ox

Quantum mass density:

Gradient of the wave function:

(2.1.2.1¢,d)

Quantum velocity: vqu(x, = un’

Bohm quantum potential:
m1dp_ w1 Np
2m @ ox’ 2m \/; ox’

V.=V, =

(2.1.21¢)
Putting the relations (2.1.2.1a-d) into the equation
(2.1.1.4) and considering that o(fn x)/dy = (1/x) (9x/dy)

and En(xm) = min x, we get:

Error!
Error!
Alnp)  masoUnfp) 19 hos
NE PR N T (2 kin(p)—< !
ot mox  ox 28x(m8x) Min(p)=<tn(p)>

119p 11dp 109v,
oy o T in(p)-< !
Y I
9% __, 9p_ %—ZK{M( )= < tn(p) >]
o = ey P, P p)>lp

0
9, IPu) s tin(py—< tn(p)Slp . @1.22)
ot ox

expression that indicates decoherence of the physical
system represented by the Logarithmic Nonlinear
Schrédinger-Nassar Equation (LNLS-NE) [eq. (2.1)];
then the Continuity Equation its not preserved.

Now, let us obtained another dynamic equation of the
LNLS-NE. So, differentiating the eq. (2.1.1.5) with
respect x and using the egs. (2.1.2.1a-e), we obtain:
Error!

Error!

Error!

Error!

Error! . (2.1.2.3)

We must observe that the eq. (2.1.2.3) is an equation
similar to the Euler Equation which governs the motion of
a fluid particle.Considering the substantive differentiation
(local plus convective) or hydrodynamic differentiation:
(See books on the Fluid Mechanics, for instance)
Error!, (2.1.2.4a)

and that:

Error! , (2.1.2.4b)

theeq. (2.1.2.3) could be written as:
Error!
Error! (2.1.2.5)

We note that the eq. (2.1.2.5) has a form of the Second
Newton Law, being the first term of the second member
is the classical newtonian force and the second is the
quantum bohmnian force.



The Quantum Wave Packet for the Logarithmic
Nonlinear Schrédinger-Nassar Equation Linearized
along a Classical Trajetory

In order to find the quantum wave packet for the
Logarithmic Nonlinear Schrédinger-Nassar Equation
(LNLS-NE) linearized along a classical trajetory, let us
the considerer the ansatz. (Nassar,2013)

[x—q®]’

plx.t) =[278" (O xexpl= s

}s
(2.1.3.1a)
or [use the eq. (2.1.2.1a,b)]:

[x—q®]

o(x.0) =[278" (O] xexpl= s

b

(2.1.3.1b)

where &(f) and q(t) = <x> are auxiliary functions of time,
to will be determined in what follows, representing the
width and the center of mass of wave packet,
respectively.

Taking the eq. (2.1.3.1a), let us calculated the
expressions [remember that {n (ab) = In a + fn b and
tne = al:
_ 2
Inf p(x,1)] = fn([zmsz n1"? xexp{—%}j
) 2
N Rt R (0] B RP P
n[27o" (1)] 262 (1) ( )
_ 2
<[ p(x,1)]>=< ﬁn[[zmsz (O] xexp {—%}j >
. [x— g0’
= En[27r52(t)] 1/2_<T(l‘)> . (2.1.8.39)
Considering that:
Error!, (2.1.3.4)
and:
< f(x,0) >= .E:p(x,t) fx,nde=g(t), (2.1.35)

we have: (Bassalo,2010)

_ 8 9’p(x,1)

gn[p(x’t)]_ < gn[p(x’t)] >= 2p(x,t) 8x2
(2.1.3.6)

Insering the eq. (2.1.3.6) into eq. (2.1.2.2), results:
a_p+M = = _5_282_p)

ot ox 2p ox’
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¥ 9P 9 9p,

= 2.1.3.7
o T a e Ty @187

where:

D=x& . (2.13.7b)
Defining: (Nassar, 1986)
Da

d, =V, 2P : (2.1.3.8)
P ox

then the eq. (2.1.3.7a) will be the form:

8_p+_8(p19) =0.
ot ox

Differenting the eq. (2.1.3.1a) in the variables t and x
[remembering that x and t are independent variables],

results: (Bassalo,2010)

aﬁ:p{—@ + 4O 1 g+ A0 [x—q(r)]z}

(2.1.3.9)

ot o) 8@ (1)
. (2.1.3.10)

ap [x—q®)]

£ = . 2.1.3.11

ox P50 0% (1) ( )

Now, substituting the egs. (2.1.3.10,11) into (2.1.3.9) and
integrating the result, we obtain: (Bassalo,2010)

3, (xt) = 58” d(D]+4(0)

Using the egs. (2.1.3.7b,8,12), we have:

(2.1.3.12)

[%— IX[x - q(O)] + (1)

To obtain the quantum wave packet [W(x , #)] of the
LNLS-NE given by eq. (2.1), let us expand the functions
S(x, t) and un(x, t) around of q(t) up to second Taylor

(1) = (2.1.3.13)

order. In this way, we have:

Error! (2.1.3.14)

Error! (2.1.3.15)

V% 0=V, a0, 0+ Va0, < [x- (0] +
V' 190 )

+ g x -0l (21.3.16)

where (') and " means, respectively, Error! and Error!.
Differentiating the eq. (2.1.3.14) in the variable x,
multiplying the result by h/m, using the egs. (2.1.2.1c,d)
and (2.1.3.13), results:

Error!
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v, () = [% CKXx— g0+

. _mq(1) " _mq@)
$T.0="40, s, =140 .
(2.1.3.17a,0)

Substituting the eq. (2.1.3.17a,b) into the eq. (2.1.3.14),
we have:

S(x,o=S0<r>+%@x[x—q<r>]+2—”;[%—x]x[x—q(t)]z
(2.1.3.18a)
where:

S0 = Sla(, i, (2.1.3.18b)

are the quantum action.
Differentiating the eq. (2.1.3.18a) in relation to the time £,
we obtain (remembering that dx/dt = 0):

& _¢on Ofm@) | 9md ..
ar‘“%“”at{ Pt q(r)]}+at{2h[ 50 TE q(t)f}
t h h

mow 8w, o mgl) &) o
2h[ 50 & (t)]X[x q(®)] \ [—5@ k]X[x—q(1)]

(2.1.3.19)
Considering the egs. (2.1.2.1a) and (2.1.3.1b), let us
write un given by eq. (2.1.2.1e) in terms of potencies of

[x - q(t)]. Before, we calculate the following derivations:
Error!

Error!

Error!

Error!

Error!

Error!

Error! (2.1.3.20)

Substituting the eq. (2.1.3.20) in the equation (2.1.2.1¢e),

taking into account the egs. (2.1.3.16), and considering
the identity of polynomial, results:

Error!

Error!

Error!

Error! (2.1.3.21)

Using the egs. (2.1.1.5) and (2.1.2.1c,e), we have:
Error!

Error! (2.1.3.22)

Inserting the egs. (2.1.3.13,15,19,21) into eq. (2.1.3.22),
we obtain:

h{So(t)+%(t)x[x—q(t)]_@ Jmd0_80

T P (t)]X[x—q(t)]z

x]x[x—q(t)]}+%{[@—x]x[x—q<r)1+q'<r)}

i) 0 _
o)

ho o)

Vig@®),t]+V g(®),1]1x[x - q(®)]+

+
Error!

2

FL s x—go

(2.1.3.23)

Since (x—q)o=1, we can gather together the eq.
(2.1.3.22) in potencies of the (x — g), obtaining:

(1S, (1) —%mcfu) FVg().+ }x[x—q(t)]”

4md* (1)
.
+ m(t)+V"[q@),t]x[x - q(D)]" +
+ {ﬂ[@—b{@+l{2] +
2 (1) o(1)
Lo e
+ EV [q(2),1] — (t)}X[x q(1)] = 0.
(2.1.3.24)

As the above relation is an identically null
polynomium, the coefficients of the potencies must be all
equal to zero, that is:

2

oy Lo _n
So(r)—h{zmq (t)+V[q(r),t]+4m52(t)},
(2.1.3.25)

.. ) 1, 2
O(t)—2Kk0(1) + K*O0(1) + ZV [q(1),t]= 4mz—53(t) :

(2.1.3.26)
(0 + Vg1 =o.
m

Assuming that the following initial conditions are obeyed:
q(0) = x,,4(0) =v,,6(0) = §,,6(0) = b,
(2.1.3.28a-d)

and that [see egs.(2.1.2.1c,d) and (2.1.3.17b)]:

Error!, (2.1.3.29)

the integration of the expression (2.1.3.25) will be given

by:

5,0 =1 fydr L )~ Vig( )1~
0 - h o {qu q B

(2.1.3.30)

(2.1.3.27)

n’ }+mv0x0 .
4mS* (') h




Taking into account the expressions (2.1.3.18a,b) in the
equation (2.1.3.30) results:

1o omg (@) o ’
S(x,r):%jodr {T—V[q(t),r]—m} +
.

mv,x, mq(r) _Q_ — 2
. . X[x q(t)+2h[5() KIx[x—q(t)
(2.1.3.31)

This result obtained above permit us, finally,
to obtain the wave packet for the LNLS-NE. Indeed,
considering the egs. (2.1.1.1), (2.1.3.1b) and (2.1.3.31),
we get:

&)

Y1) =[228 ()] xe xp{g[——zd— )Xx—qO)F

45 (1)

xexp| imv,x, LTI

im;]l(t) O]+

2

. )
et mg (1) oD
Xexp{h .[0 dt [—2 Vig(t),t'] —4m52 (t’)]}'

(2.1.3.32)

2.1.4. Calculation of the Feynman
Propagator for the Logarithmic  Nonlinear
Schrodinger-Nassar Equation Linearized along a
Classical Trajetory

The looked for Feynman-de Broglie-Bohm
propagator for the Logarithmic Nonlinear Schrédinger-
Nassar Equation (LNLS-NE) linearized along a classical
trajectory, will be calculated using the egs. (1.3) and
(2.1.3.24). However, in the eq. (1.3), we will put with no
loss of generality, to = 0. Thus: (Bassalo et al., 2002)

Error! . (2.1.4.1)
Initially let us define the normalized quantity:
(v, x 0= (2m 52,014 Y, x0, (21.42)

which satisfies the following completeness relation:
(Bernstein,1985)

Error! . (2.1.4.3)

Considering the egs. (2.1.1.1), (2.1.2.1a,b) and
(2.1.4.2,3), we get:

W (x, )X P(x,1) = @ (x,1) = p(x,t), (2.1.4.4)
dD*(vo,x,t)‘P(vo,x,t) =

QASH " W vy, X, )P (v, x,1) = QA" p(vy, X, 1)

—

POy, x,1) =)D (v, x, )P (v, X,1).

(2.1.4.5)
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On the other side, substituting the eq. (2.1.4.5) into eq.
(2.1.3.9), integrating the result and using the expressions
(2.1.8.1a) and (2.1.4.2) results [remembering that Error!,

Y Y(£ ») — 0, and the integration for parts]:

APY) IPYY,)
+ =
ot ox

aj(q’q’)d 'ra(cbzﬁ) _

- % [C@wax+@ws,)| =
a +oo * * oo
S [ @Wac+rs)" (¥ ws,) | -

% f:(dflp)dx ~0. (21.46)

The eq. (2.1.4.6) shows that the integration is
time independent. Consequently:

Error!. (2.1.4.7)
Multiplying the eq. (2.1.4.7) by d)(vo, x, t) and
integrating over Yo and using the eq. (2.1.4.3), we will

obtain [remembering that Error!]:
Error!

= Error!

Error!

= [T dvyd, @ (v, 2,00 (v, %0, 0¥ (x,,0)  —
Error!
x @ (vo, Xy 0) } LIJ(XO, 0) dxo. (2.1.4.8)

Comparing the egs. (2.1.4.1,8), we have:

Error! . (2.1.4.9)

Substituting the egs. (2.1.3.31) and (2.1.4.2) in the
equation (2.1.4.9), we obtain the Feynman Propagator for
the LNLS-NE linearized along a classical trajetory, that

we were looking for, that is [remembering that Error!]:
Error!

im 8(@t) _
XeXp{(Zh[5(t) 452( )) [x—q(D]*}x
xexp{imcil(t)x[x—q(t)]}x
xexply [ a2 © V[qa’),r’)]—#zm]},
(2.1.4.10)

where q(f) and d(f) are solutions of the differential
equations given by the egs.(2.1.3.25,26).
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Finally, it is important to note that putting k = 0 and
V[q(t), f] = 0 into eq. (2.1.4.10) and egs. (2.1.3.25,26) we
obtain the free Feynman propagator. (Feynman and
Hibbs,1965) (Bassalo et al., 2002)

Ermakov-Lewis Invariants

Many years ago, in 1967 (Lewis, 1967), H. R. Lewis has
shown that there is a conserved quantity, that will be
indicated by / associated with the time dependent
harmonic oscillator (TDHO) with frequency w(1), given by:

| .
1= —(ag-qa* +(L?, @1
2 o
where g and a obey, respectively the equations:

(3.2,3)

1
. 2 . 2 _
g+w(t)g =0, a+w (t)a—? .

On the other hand, as the above expressions have also
been obtained by V. P. Ermakov (Ermakov,1880) in
1880, the invariants determination of time dependent
physical systems is also known as the Ermakov-Lewis
problem. So, considerable efforts have been devoted to
solve this problem and its generalizations, in the last forty
years, and in many works have been published on these
subjects (Nassar, 1986a).

The Ermakov-Lewis Invariants for the Logarithmic
Nonlinear Schrédinger-Nassar Equation

Now, let us investigate the existence (or not) of these
invariants for the Logarithmic Nonlinear Schrédinger-
Nassar Equation (LNLS-NE) with the potential Ux, 1)
given by:
Error!, (3.1.1)
which is the Time Dependent Harmonic Oscillator
Potential (TDHOP).

Taking the eq. (2.1.2.3) and considering the
eq. (3.1.1), results:
Error!. (3.1.2)
In order to integrate the eq. (3.1.2) let us assume that
the expected value of quantum force [Error!] is equal
to zero for all times {, that is:
y v, (x.1) S 0 o v,

>

ox ox
(3.1.3a-c)
In this way, using the eq. (2.1.2.1f), we can write the eq.
(3.1.2) into two parts:

|x=q(t) , <x>=(q(t) .

M+v u(x,t)M+w2(t)x: k(t)X[x—q(t)]
al- g ax
. (3.1.4)

2 82 ,
O L INPLED ) yxix—q).
ox 2m* [p(x,t)  Ox
(3.1.5)

Performing the differentiations indicated in the eq. (3.1.5)
we get:

1 pwn 2 dpndipxn |
4m*  p(x,t) ox° p’(x,t) Ox ox®
e L POy xx—g)]. (316)
p°(x,t) ox

To integrate the eq. (3.1.6) it is necessary to known the
initial condition for p(x,t). (Bassalo et al.,2002) Let us
assume that for t = 0 the physical system is represented
by a normalized Gaussian wave packet, centered at g(0),
that is:

_ [x—q(0)] 1 B’
0) =[276” ()] exp{——0——} =—=exp(-—
P(x,0) =270 (0)] "~ exp{ 252(0)} \/ZGXP( C)
. 31.7)
where:
A=2m52(0), B=x-gq(0), C=2820). (3.1.8-

10)

Since the eq. (3.1.7) is a particular solution of the eq.
(3.1.6), we must have:

n? 1 px0) 2 9px0) 9*p(x,0)
4m*  p(x,0)  ox’ P (x,0)  Ox ox®
+
1 9p(x,0).5
= k(0 —q(0)].
+ p3(x,0)[ » I’} =k(0)x[x—¢q(0)]
(3.1.11)

Making the differentiation indicated in the eq. (3.1.11),
results: (Bassalo et al.,2002)

Error!
Error!, (3.1.12)
and:
hZ
5'0)=—7——.  (3.1.19)
4m~k(0)

Comparing the egs. (3.1.12,13) with the egs. (3.1.6,7), by
analogy we get:
Error!, (3.1.14)

_[x—q®r

p(x,t)=[276" ()] exp{ 25°0)

Y, (3.1.15)

and:



Error! . (3.1.16)

Using the eq. (2.1.3.13) we calculate the following
differentiations (remembering that t and x as independent
variables):

v, (1) 9 &)

- _E{[%—z(]><[x—q(t)]+q'(t)}=
o W, .. o M) o
[ 50 o (I)]X[x q®]-I[ 50 KX q(t)+¢(1),
(3.1.17)
avqu(x,t)_i @_ _ . _@_
Ey —ax{[a(t) KIx[x q(t)]+q(t)}—5(t) K
(3.1.18)

Putting the egs. (2.1.3.13) and (3.1.17,18) into the eq.

(3.1.4), considering the eqg. (3.1.14), adding and
subtracting the term w2(t) q(f), results: (Bassalo et
al.,2002)

oM W, . o 8M) Lo

[ 50 & (I)]X[x q®]-I 50) KIxq(t)+q(1) +
' {[%—x]x[x—q<r>]+q'<r>}x[%—x] ;
Error!

o) 60) . o o n’ 1
Sl SEAN St P4 __ _

[5(0 5(t)1(+1( +w (1) 4m254(t)]><[x q@®)] +

+ [+ @’ (Hg)]X[x—qg@®)]° =0. (3.1.19)
To satisfy eq. (3.1.19), the following conditions must be
obeyed:

@—2@K+ K’ +w2(t)—% =0
o) 8@ 4m=0" (t)

. 5 5 h2
0)-20)k+[x" +w (1)]0(t) PRy s
(3.1.20)

G +@’(t)g(t) =0.  (3.1.21)
Putting:
Error! ,
we obtain:

(3.1.22)
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2

5= e, 5= a
dm dm
(3.1.23,24)

Inserting the egs. (3.1.22-24) into the eq. (3.1.20) and
multiplyng the result by a, we get: (Bassalo et al., 2002)

G —-20Kk+ (0 + K)o = % . (3.1.25)
a

Finally, eliminating the factor w2 into the egs. (3.1.20,21),
we get:

. . 1
a-20K+ (@ + K)o =——
a

C'i’q—c']'a—Zd’K'q+K'2aq:% -

d . .
Z(ag-qay=-L +20my - K*0qg -
dt o

(rﬁq—q'a)gt(rﬁa—qm=<0a—q'a>§+<0a—ém><2mq—ﬁom

—

a4l dn o 2 d q
dt[z(w 4o) ]+dt[2(a)] —(20mg — K o) o dt(a)

—

1. . d
i{[—(aq —ga)’ + (1)) = —Qax- Kayga® = (L
dr 2 o dt «
I _ue-aygar L@y, (3130)
dt dt «

where [see eq. (3.1)]:
L ag-gay+ &y, (3137)
2 o

which represents the Ermakov-Lewis Invariant (ELI) of
the TDHO. (Bassalo et al., 2002) In conclusion, the eq.
(3.1.36) we have shown that the LNLS-NE has not an
ELIfor the TDHO.

The Bohmian Trajectories for the Logarithmic
Nonlinear Schrédinger-Nassar Equation

The associated Bohmian Trajectories (Nassar,2013),
Sanz,2000),(Pan, 2010), (Holland, 2005), (Wyatt, 2005)
for the Logarithmic Nonlinear Schrédinger-Nassar
Equation (LNLS-NE) of an evolving ith particle of the
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ensemble with an initial position Xy, can be calculated by

considering that:

x, (1) =v,,[x;(1),1]. (4.1)
Then subs’Fituting the eq. (4.1) into eq. (2.1.3.13), results:
(1) - [%—k]x[x—th i -
50040 = (50 ~kIxlx=g0) .
5 O-4®) _ 50
x—q@)  6@)
Error!
L O—g01 _, 50 .
[Xo; — 4] )
[x,()—q@®)] _ @)
‘ = —exp(kt) —
[Xo; — 4] d, P
Error!. (4.2
The egs. (3.1.20,21) show that a continuous

measurement of a quantum wave packet gives specific
features to its evolution: the appearance of distinct
classical and quantum elements, respectively. This
measurement consists of monitoring the position of the
quantum systems and the result is the measured
classical path g(t) for t within a quantum uncertainty d(#).

The Bohmian Trajectories for the Logarithmic
Nonlinear Schrodinger-Nassar Equation in Stationary
Regime

From the egs. (3.1.20,21), we note that for Kk # 0 a
stationary regime can be reached and that the width of
the wave packet can be related to the resolution of
measurement as follows. Then, considering that &(1) = cfe

[&(7) = 0] in the egs. (3.1.20,21), we have:

Error!, (4.3a)
where!:
2md;
7, = (%) —68x10™s,  (4.3b)

is the Bohmtime constant which determines the time
resolution of the quantum measurement, and:

g +ayq() =0 — q(1) = g exp(iwyt) . (4.4)

The egs. (4.3a,b) means that if an initially free wave
packet is kept under a certain continuous measurement,
its width (60) may not spread in time. Then, the

associated Bohmnian Trajectories (BT) [eq. (4.2)] of an
evolving ith particle of the ensemble with an initial
position Xoi is giving by:

xl(t) = qq exp (x iwo 0+ (XOi_ qo) exp(-ki). (4.5
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