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ABSTRACT
Protecting people from heavy metal contamination is an important public-health concern and a major 
national environmental issue in China. The objective of this study was to quantitatively estimate the heavy 
metal concentration in rice leaves using leaf hyperspectral data and partial least squares regression (PLSR) 
models. 21 rice leaf samples and spectrum were gathered from farmlands in Zhangjiagang area, China. 
Copper (Cu), Cadmium (Cd) concentrations of rice leaves were measured within the lab. Firstly, the spectral 
data were treated by some methods, including, original reflectance (OS), First Derivative (FD) and Second 
Derivative (SD). Secondly, in order to select input variables for PLSR models, the correlation analysis 
between heavy metal concentration and spectral bands (OS, FD and SD), spectral indices were performed. 
Finally, we constructed the PLSR models between heavy metal concentration and spectrum. The results 
showed that correlation coefficients between Cu concentration and spectral data were higher than Cd. And 
that the bands significant correlation (P<0.05) with Cu concentration were far more than Cd. Ultimately, 
we selected 453 variables (442 bands and 11 spectral indices) and 19 variables (18 bands and 1 spectral 
index) as input variables of PLSR model for Cu and Cd, respectively. Moreover, we found that the Cu and 
Cd concentrations significantly correlated with spectral variables for (R2=0.41, RMSE=1.93) and (R2=0.38, 
RMSE=0.018) of PLSR models, respectively. These results indicated that they were good predicting models 
for estimating heavy metal concentration in rice leaves.
Keywords: Hyperspectral remote sensing, Rice leaves, Heavy metal concentration, PLSR models, Quantitatively 
estimation

INTRODUCTION

With the rapid development of society and economy, 
discharge of industrial wastes, using pesticide and fertilizer 
and waste water irrigation, the heavy metal contamination 
of soil and crops was becoming deteriorative (Zhou et 
al., 2015). In China, the concentration of Cu, Hg Zn, Cd 
significantly exceeded their background level in Jiangsu 
province. Among all the heavy metals, Hg and Cd brought 
the dominating potential ecological hazard (Zhong et al., 
2007). The crops also had been affected inevitably, which 
would be harmful to human health. Some researchers 
found that the Yangtze River Delta region was polluted 
by Cd, Pb, Cr, Cu and Zn. And among them, Cd pollution 

was the most serious and had the highest conversion 
coefficients (Xiao et al., 2010). Moreover, these heavy 
metals were absorbed into roots, stems, leaves and grains 
of rice. Furthermore, some researchers found that the 
average concentrations of Cd, Pb and Zn were 20.1, 1234.9 
and 305.2 mg kg-1 respectively in Zamfara State, Nigeria, 
which greatly exceeded the soil background value (Abdu 
and Yusuf, 2012). In the suburban areas of Varanasi, India, 
some researchers found that the content of Cd, Pb and Ni 
exceeded the background values because of waste water 
irrigation (Sharma et al., 2007). Usually, heavy metals 
consist of many characteristics (Nagajyoti et al., 2010), such 
as concealment, lag, irreversibility and long cycle period. At 
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present, the main problem of humanity faced is that we are 
difficult to monitor heavy metal contamination from large 
area. However, hyperspectral remote sensing has the ability 
to do this job (Li et al., 2010), so it is promising in monitoring 
the heavy metal pollution in large scales. 

The conventional methods of measuring heavy metal 
concentration have the advantages of high precision 
and low detection limit. However, these methods also 
have disadvantages, such as trival steps, destroying soil 
and wasting resources, et al (Rao et al., 2014). Instead, 
hyperspectral remote sensing has the superiorities of 
convenience, rapidity and no damage. Application of 
portable spectrometer, aerial remote sensing and space 
remote sensing would monitor heavy metal pollution from 
points to surfaces and qualitative analysis to quantitative 
analysis (Jing et al., 2015).

Partial Least Squares Regression (PLSR) is a common 
method for spectral analysis. And it combined the Principal 
Component Regression (PCR), Multiple Linear Regressions 
(MLR) and correlation analysis (Martens, 2001). Although 
PCR can prevent overfitting by internal inspection, yet 
it is unsatisfied in accuracy and stability. Moreover, its 
components are created solely by the spectral data (Ergon, 
2014); however, the components in PLSR are created by the 
spectral data and response variables jointly. Moreover, PLS 
superior to PCR and MLR in many cases. It can be used in 
these situations (Axelsson et al., 2013): 1) the two groups 
of variables are large, 2) there is multicollinearity among 
variables, 3) and the number of observations are less than 
variables. Additionally, comparing with artificial neural 
network (ANN) of regarded as ‘‘black boxes’’, regression 

coefficients of PLSR can show important bands for 
prediction, which is capable of improving the accuracy of 
predicting heavy metal concentration (Farifteh et al., 2007).

This study aimed to analyze the relationship between 
hyperspectral reflectance, spectral indices and heavy metal 
concentration. We committed to select the optimal variables 
showed sensitivity to heavy metal concentration (P<0.05). 
Furthermore, we constructed PLSR models to predict Cu 
and Cd content of rice leaves using hyperspectral data. 

MATERIALS AND METHODS

Introduction of Study Area

The study area is located in the Zhangjiagang city, Jiangsu 
province of China (Figure 1). It is part of Yangtze River Delta 
Economic Zone and flat terrain (31°43'-32°02'N, 120°21'-
120°52'E). The average annual temperature is 15.2°C and 
the average annual precipitation is 1039 mm, respectively. 
The city soil mainly consists of two types, moisture soil and 
paddy soil. The main crops include rice and cotton. Due to 
the rapid development of chemical industries and waste-
water irrigation, heavy metal pollution of soil is becoming 
more and more serious (Shao et al., 2006), and which would 
pose a great threat to crops security and human health.

Collection of Rice Leaf Samples and Spectral Data

The research was carried out in rice paddy field in September, 
2017. Sampling sites were randomly distributed in Figure 
1. In total, 21 rice leaf samples were gathered in farmland 
over Zhangjiagang city. Five random samples on each plot 
were taken and bulked together as one composite sample. 
Then five spectral measurements of three fully-expanded 

Figure 1. Location of sample points in Zhangjiagang city, Jiangsu province, China.
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leaves near top of each bundle were made. Additionally, 
the spectrum was measured by field portable spectrometer 
(UniSpec, PP systems, Haverhill, MA, USA.), which measured 
from 310 nm to 1130 nm. The spectral resolution is 10 nm 
and sampling interval is 1 nm. In each sample site, the exact 
coordinates of each composite sample were registered 
using a GPS. Eventually, rice leaf samples were put into 
polyethylene bags and were taken to lab for measuring 
heavy metal concentration.

Measurement of Heavy Metal Concentration in Rice Leaves

Firstly, rice leaf samples were washed by water for three 
times. Then the rice leaf samples were dried at 60°C for 
12 h, and they were sieved through a 0.25 mm nylon mesh 
to remove big debris. The content of Cu and Cd in rice 
leaves was measured by Inductively Coupled Plasma Mass 
Spectrometry (ICP-MS, X2, Thermo Electron Corporation) 
(Yang et al., 2014). For pretreated samples, 0.2 g was added 
to dissolve tank to digestion for 20 minutes, simultaneously 
added 5 ml HNO3 and 2 ml H2O2. Finally, the solution was 
diluted to 50 ml and the heavy metal concentration of rice 
leaves were measured when solution became clarified. 

Contamination caused by single heavy metal was assessed 
by enrichment coefficient (P), according to the following 
formula (Sun and Hou, 2005).

Pi=G/S (1)

Where G is the measured value of metal i and S is the criteria 
for metal i authorized by national standards (GB2715-2005 and 
GB15199-1994). Pi with lower value than 1 indicates that rice 
leaves are not polluted by metal “i” and safe for public health. 
Otherwise, it denotes that rice leaves are contaminated. 

Selection of spectral indices 

We selected 16 spectral indices of commonly used. They 

were listed and calculated as shown in Table 1. Some studies 
found that the primary effect of Cu and Cd on rice is the 
corresponding reduction in chlorophyll (Liu et al., 2010), 
so exception of the VARI and WI, the remaining 14 spectral 
indices are all related to chlorophyll or pigments. Spectral 
indices of λr, λb and λy were derived from first derivative 
reflectance and the others were derived from original 
reflectance. To improve the accuracy in estimating heavy 
metal concentration in rice leaves, the correlation analysis 
between spectral indices and heavy metal concentration 
would be carried out. Finally, the spectral indices sensitive 
(P<0.05) to heavy metal concentration were selected as 
input variables of PLSR models according to previous studies 
(Liu et al., 2011).

Construction and Validation of PLSR Models

We selected PLS method to construct mathematical models 
between spectral data and heavy metal concentration. PLS 
model is based on latent variable decomposition of two 
blocks of variables, matrices X and Y, which contain spectral 
data and heavy metal concentration, respectively. And the 
purpose of the method is to find a small number of latent 
factors that are predictive for Y and use X efficiently (Mevik, 
2007). 

Due to the number of available samples were limited, so 
we used leave-one-out validation procedure to verify the 
prediction accuracy of the PLSR model. From all n samples 
within the dataset, n-1 was utilized to build the regression 
model. This procedure was repeated for all n samples, 
resulting in predictions for all samples (Kooistra et al., 
2001). The parameter used to evaluate the quality of the 
results was the root mean square error of cross-validation 
(RMSECV) (Kooistra et al., 2001) given by

RMSECV= ( )
c

pm

N
CC∑ − 2

                          (2)

Spectral Indices Name Abbreviation Formulation Reference
Red edge position λr λr=λi(R'(λ)=MAX(R'(λ∈670-780)) (Chang and Collins, 1983)
Blue edge position λb λb=λi(R'(λ)=MAX(R'(λ∈450-550) (Chang and Collins, 1983)
Yellow edge position λy λb=λi(R'(λ)=MIN(R'(λ∈550-650) (Chang and Collins, 1983)
Green peak position λg λg=λi(R(λi)=Rg) (Gamon et al., 1992)
Green Normalized Difference Vegetation Index GNDVI (R800-R550)/(R800+R550) (Daughtry et al., 2000)
Normalized Difference Vegetation Index NDVI (R800-R670)/(R800+R670) (Tucker, 1979)
Ratio Vegetation Index RVI R810/R560 (Schuerger et al., 2003)
Plant Senescence Reflectance Index PSRI (R680-R500)/R750 (Merzlyak et al., 1999)
Optimized Soil-Adjusted Vegetation Index OSAVI 1.16×(R800-R670)/(R800+R670+0.16) (Daughtry, et al., 2000)
Photochemical Reflectance Index PRI (R570-R531)/(R570+R531) (Gamon et al., 1992)
Structure-insensitive Pigment Index SIPI (R800-R445)/(R800-R680) (Thomas et al., 1971)
Visible Atmospherically Resistant Index VARI (R555-R680)/(R555+R680-R480) (Gitelson et al., 2002)
Modified Chlorophyll Absorption Reflectance Index MCARI (R700-R670)-0.2(R700-R550)×(R700/R670) (Daughtry et al., 2000)
Water Index WI R900/R970 (Thomas et al., 1971)
Vogelmann Red Edge Index VOGI R740/R720 (Vogelmann et al., 1993)
MERIS Terrestrial Chlorophyll Index MTCI (R750-R710)/(R710-R680) (Dash and Curran, 2007)

Table 1. Summary of spectral indices used in the sensitivity analysis.

R' means the first derivative reflectance
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where Cm is the measured value for a rice leaf parameter 
and Cp is the value predicted by the PLSR model. NC is the 
number of samples.

This study selected various pre-treatments, concluding 
original spectra (OS), First Derivative (FD) and Second 
Derivative (SD). Then the correlation analysis of processed 
reflectance (OS, FD and SD), spectral indices and heavy 
metal concentration were determined. Then the bands 
and spectral indices with significant correlation (P<0.05) 
indicated that they were sensitive to heavy metal 
concentration. So that they would be selected as input 
variables of PLSR models. Then the performance of PLSR 
models were assessed with coefficient of determination 
(R2) and RMSE values (Wu et al., 2005). The construction of 
PLSR models and cross-validation were achieved in the TQ 
Analyst (8.3.125, Thermo Fisher Scientific Inc.). The spectral 
pre-treatments (OS, FD and SD) and all of graphs were done 
in OriginPro 8. And the correlation analysis of pre-processed 
reflectance (OS, FD and SD), spectral indices with heavy 
metal concentration were performed in IBM SPSS Statistics 
22 using bivariate related analysis.

RESULTS AND ANALYSIS

Heavy Metal Concentration in Rice Leaves

Cu is an essential element, but high doses can adversely 
affect plant growth. Excess Cu can inhibit the synthesis of 
chlorophyll or cause chlorophyll damage, leading to the 
peroxidation of lipids in photosynthesis biofilms, which 
affects photosynthesis of plants and leads to a decline in 
biological yield. Moreover, high amounts of Cu in the soil 
can affect the normal metabolic function of plant roots and 
cause plant growth disorders. And it will pose a serious 
threat to human health when the Cu migrates into brown 
rice. While Cd is a non-essential element that can be easily 
absorbed by plants (Pahlsson, 1989). In order to compare 
the prediction accuracy of these two elements, Cu and Cd 
were selected as the research objects. As shown in Table 2, 

average of Cu and Cd concentration in rice leaves was 7.23 
mg kg-1 and 0.04 mg kg-1, respectively. What’s more, average 
of Cu and Cd concentration in rice leaves were all lower 
than authorized by national standards (GB2715-2005 and 
GB15199-1994). And according to enrichment coefficients in 
Table 1, there were no obvious Cu contamination (Pi=0.72) 
and Cd contamination (Pi=0.20) in this region.
Table 2. Statistical information of heavy metal concentration in rice 
leaves for 21 samples.

 Cu Cd
Min 4.08 0.02
Max 12.2 0.1

Mean 7.23 0.04
Std 2.28 0.02

CV (%) 31.5 40.8
Pi 0.72 0.2

Std: Standard Deviation; CV: Coefficient Variation (unit: mg kg-1); Pi: 
Enrichment coefficients

Reflectance Spectra of Rice Leaves

There were similar trend among different 21 rice leaf 
samples in Figure 2(A). As referred above, the spectra were 
measured from 310 nm to 1130 nm. However, the range of 
310-400 nm and 1001-1130 nm were improper to be used 
to construct models, because they were unstable and had 
excessive noises (Gomez et al., 2008). Therefore, the bands 
of 401-1000 nm were used to build PLSR models. 

As displayed in Figure 2(B), there was obvious absorption at 
the wavebands of 490, 570, 610 and 670 nm in the visible 
regions. And peak values of reflectance spectra were located 
at the wavebands around 520, 710 nm. Moreover, the 
reflectance spectra were low in the range of 401~730 nm 
mainly on account of the absorption effect of chlorophyll 
(Benhaddya et al., 2016). Then a reflectance spectrum in 
the whole visible region was obviously lower than the near 
infrared region because of chlorophyll absorption (Liu et al., 
2010). With the influence of cellular structure and water of 

Figure 2. (A) Original reflectance of 21 rice leaf samples; (B) First derivative reflectance of 21 rice leaf samples.
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leaves, the spectral reflectance was increased sharply in the 
range of 730~1130 nm (Algora, 2000).

Correlation Analysis between Heavy Metal Concentration 
and Hyperspectral Data

The Person’s correlation coefficients between pre-processed 
reflectance (OS, FD, SD) and heavy metal concentrations in 
rice leaves were shown in Figure 3 and Table 3. The optimal 
bands were selected as input variables to construct PLSR 
models according to the significant correlation (P<0.05). 
Among three pre-processed methods, the original reflectance 
(OS) had the most wavelengths with significant correlation as 
shown in Figure 3(A). The significant correlation between Cu 
concentration and spectral data were all distributed in visible 
spectroscopy with 272 bands in the OS correlogram, and main 
in visible spectroscopy with 94 bands in the FD correlogram 
and 76 bands in the SD correlogram. 

Obviously, correlation coefficients between Cd concentration 
and pre-processed reflectance (OS, FD, SD) were lower than 
Cu and no bands reach the extremely significance level 
(P<0.01) as shown in Figure 3(B) and Table 3. And that there 
were no bands reach significance level (P<0.05) in original 
reflectance form Table 3. The correlation coefficients 
between Cd concentration and spectral data with P<0.05 
were main in visible spectroscopy with 8 bands in the FD 
correlogram and 10 bands in the SD correlogram.

As displayed in Table 3, the maximum correlation coefficients 
of pre-processed reflectance (FD and SD) were larger than 
the original reflectance (OS), and the minimum correlation 
coefficients of pre-processed reflectance (FD and SD) were 
lower than the original reflectance (OS). These indicated 
that the pre-processing techniques (FD and SD) could 
remove redundancy information and made some subtle 
information clear in the spectral to improve the accuracy of 
PLSR models (Wang and Ding, 2010).

Correlation coefficients between spectral indices and heavy 
metal concentrations were shown in Table 4. Spectral 
indices demonstrated a wide range of correlations with Cu 
(-0.47--0.60) and Cd (-0.46--0.30). However, the correlation 
coefficients between spectral indices and Cd concentration 
were all low and only 1 spectral index reached significant 
correlation level. While among 16 spectral indices, the 
correlation coefficients of 11 spectral indices reached 0.05 
levels for Cu concentration. Heavy metal toxicity in rice 
leaves was assessed by the decrease in chlorophyll and 
protein contents (Hsu and Kao, 2004), so exception of WI 
and VARI, the others are related to chlorophyll or pigments. 

PLSR Models for Predicting Cu and Cd Concentration

Eventually, we selected 453 variables (442 bands and 11 
spectral indices) and 19 (18 bands and 1 spectral index) 
variables as input variables of PLSR models for Cu and Cd, 

Figure 3. Correlation coefficient between pre-processed reflectance (OS, FD, SD) and heavy metal concentrations of Cu 
(A) and Cd (B) in rice leaves.

Heavy metals Spectral pre-processed Maximum correlation 
band (nm) Correlation coefficient Minimum correlation 

band (nm) Correlation coefficient

Cu
OS 315 0.018 646, 647, 648 -0.562**

FD 338 0.602** 940 -0.560**

SD 715 0.604** 612 -0.589**

Cd
OS 439 0.093 399 -0.208
FD 943 0.408 474 -0.525*

SD 477 0.489* 948 -0.501*

Table 3. Correlation analysis of pre-processed reflectance and heavy metal concentration.

*means correlation is significant at the 0.05 level (P<0.05); **means correlation is significant at the 0.01 level (P<0.01).
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respectively. Comparison of measured concentrations 
against the predicted concentrations of Cu and Cd using PLSR 
models were shown in Figure 4(A) and 4(B), respectively. 
The criteria of optimal PLSR models were higher R2 closed 
to 1 and lower RMSE closed to 0 (Wu et al., 2005). We can 
see from Figure 4, the Cu and Cd concentrations significantly 
correlated with spectral variables for (R2=0.41, RMSE=1.93) 
and (R2=0.38, RMSE=0.018), respectively, which were all 
indicative of good predicting models. The Cu concentration 
had higher prediction accuracy than Cd, maybe because 
the Cu is essential element and Cd is unessential element 
of crops and the crops absorbed more Cu concentration. 
The interaction between Cu and Cd is complex and has an 
effect on their individual functions (Pahlsson, 1989). We can 
use the PLS models with high prediction accuracy to predict 
the Cu and Cd concentrations of rice leaves if we are sure 
about that the rice leaves are stressed by a certain heavy 
metal concentration. To some extent, prediction accuracy 
of Cu and Cd concentrations still would be improved in 
the future, some appropriate methods including gathering 
more rice leaf samples, grinding and sieving rice leaves by 
more aperture meshes, and covering many more types of 
rice (Ihedioha et al., 2016), could be taken to improve the 
stability and accuracy of prediction models.

DISCUSSION

Existed Tissues

The quantitatively prediction of rice leaves contamination 
used hyperspectral data still face many other problems, such 
as leaf roughness and moisture, sun zenith, low signal noise 

ratio (SNR), atmospheric attenuation, pixel mixing, (Mo et 
al., 2005). And PLS models for quantitatively estimating the 
heavy metal concentration of rice leaves still exist problems, 
such as low prediction accuracy. Moreover, it should be 
noted that the results of this study were only valid for the 
rice leaves types represented in the investigated region. 
The Further studies are required to examine the usefulness 
of the reflectance spectra on other regions and devote to 
enhancing the prediction accuracy.

In order to protect the crops from polluting by heavy metals, 
the following studies should pay more attention to predict 
the heavy metal concentration of rice grains and build 
the warning systems of heavy metal contamination from 
source. Moreover, effects on the prediction accuracy of 
heavy metal concentration through this method should be 
further studied and prediction accuracy of PLS models still 
should be improved.

Efforts to improve the Prediction Models

Some researchers found that selecting the optimal bands 
for prediction models was a good method to improve the 
prediction accuracy (Huang et al., 2010). For example, 
comparing with the full bands, the optimal bands selected 
by genetic algorithm could achieve better prediction result, 
the proposed algorithm in the study can be useful in the fast 
preprocessing of hyperspectral data (Zhang et al., 2009). A 
researcher constructed PLS models to assess contaminant 
metals (Ni, Cr, Cu, Hg, Pb, Zn) and As in the suburban soils of 
the Nanjing area, finally, he calculated the PLSR regression 
vector of the final model for Ni, it shows the important 

 λr λb λy λg GNDVI NDVI RVI PSRI OSAVI PRI SIPI VARI MCARI WI VOGI MTCI
Cu 0.60** 0.45* 0.04 -0.13 0.53* 0.48* 0.52* 0.52* 0.3 -0.24 0.32 -0.46* -0.47* 0.45* 0.53* 0.52*

Cd 0.02 0.26 -0.18 -0.46* 0.08 0.14 0.11 -0.07 0.08 -0.3 -0.21 0.1 -0.05 0.03 -0.05 -0.07

Table 4. Correlation coefficients between spectral indices and heavy metal concentration.

*Correlation is significant at the 0.05 level (P<0.05);**Correlation is significant at the 0.01 level (P<0.01).

Figure 4. Plot of measured concentrations against the predicted concentration of Cu (a) and Cd (b) of rice leaves using 
PLSR models.
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bands for predicting Ni : 0.52, 0.90, 1.42, 1.90, and 2.0–2.2 
μm (Wu et al., 2005). 

This study selected optimal bands and spectral indices 
with significant correlation between heavy metal 
concentration and pre-processed reflectance (OS, FD and 
SD), spectral indices. Comparing with full bands, the PLS 
models constructed by optimal bands and spectral indices 
had higher prediction accuracy. Exception of that, some 
appropriate methods, including gathering more rice leaf 
samples, grinding and sieving rice leaves by more aperture 
meshes, and covering many more types of rice (Ihedioha et 
al., 2016), would help to improve the stability and accuracy 
of prediction models.

The Focus of Following Studies

There were many studies focused on soil heavy metal 
contamination using hyperspectral remote sensing (Yan 
and Qing-Tian, 2007). However, for food security and 
people health, paying more attention to crops heavy 
metal contamination would be a more important research 
direction (Kalita et al., 2010). This paper verified that it’s 
potential to use hyperspectral data to quantitatively estimate 
heavy metal concentration of rice leaves, but the accuracy 
wasn’t very high. So we should make effort to improve the 
prediction accuracy through using more suitable methods to 
select optimal bands, such as PLS regression vector method 
and genetic algorithm method (Tomczak and Kamiński, 
2012). So for these applications where we have to deal 
with relatively noisy spectra, the application of wavelength 
selection could be a promising pre-treatments method. 

The threshold value of heavy metal contamination also 
is an important problem (Moreno et al., 2009). In order 
to prevent the crops contaminated by heavy metals in 
advance, it is vital to summarize that when the amount of 
heavy metal is reached, the spectrum changes. Therefore, 
these techniques is promising to truly achieve the target 
that monitoring heavy metal pollution in large area and 
accurately mapping the heavy metal concentration in crops.

CONCLUSION

Based on the field hyperspectral reflectance data and heavy 
metal concentration of rice leaves, this study established 
the PLS models to quantitatively estimate heavy metal 
concentration in rice leaves using hyperspectral data. 

In Zhangjiagang city, Cu and Cd content of rice leaves 
were low, and the enrichment coefficients indicated that 
there were no obvious Cu contamination (Pi=0.72) and 
Cd contamination (Pi=0.20) in this region. Correlation 
coefficients between Cu concentration and pre-processed 
reflectance (OS, FD and SD) were higher than Cd, and 
that the bands with significant correlation (P<0.05) for Cu 
concentration were far more than Cd concentration. Among 
16 spectral indices, 11 spectral indices and 1 spectral index 

were significantly correlated with Cu concentration and 
Cd concentration, respectively. 453 variables (442 bands 
and 11 spectral indices) and 19 variables (18 bands and 
1 spectral index) were selected as input variables of PLS 
model for Cu and Cd, respectively. Finally, we found that 
the Cu and Cd concentrations significantly correlated with 
spectral variables for (R2=0.41, RMSE=1.93) and (R2=0.38, 
RMSE=0.018) of PLS models, respectively. These results 
indicated that they are good predicting models for predicting 
heavy metal concentration in rice leaves.

In summarize, hyperspectral data and PLSR models could be 
employed as an alternative solution to quickly assess heavy 
metal concentration in rice leaves. 
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