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Effects of thermal radiation and magnetic field on heat transfer in a micropolar fluid along a vertical 
porous stretching surface in the presence of internal heat generation and variable viscosity are studied. 
The governing equations are transformed into a system of ordinary differential equations and solved 
them numerically using Mathematical program. The obtained  results  are checked against previously 
published work for special cases of the problem in order to  access the accuracy of the numerical 
method and found to be in excellent agreement  Effects of the various parameters on the velocity 
profiles, temperature profiles and rate of heat transfer  are also displayed graphically and tabulated 
form. 
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INTRODUCTION 
 
The boundary layer flow over a stretching surface have 
many practical applications in several engineering 
processes, for example, paper production, glass blowing, 
wire drawing and glass fiber production. Since the 
pioneering study by (Sakiadis, 1961 and 1961)who 
initialed the study of boundary layer flow over a 
continuous solid surface moving with constant speed. 
Crane (1970) extended the problem of Sakiadis (1961) 
who presented an exact analytical solution for the steady 
two dimensional stretching of surface in a quiescent fluid. 
The flow field of stretching surface with a power-law 
velocity variation was discussed by Banks (1983), Ali 
(1995) and Elbashbeshy (1998) extended the work of 
Banks (1983) for a porous stretched surface with different  
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values of the injection parameter. Elbashbeshy and Bazid 
(2000, 2003 and 2004) re-analyzed the stretching 
problem discussed earlier by Elbashbeshy (1998) 
including variable viscosity, internal heat generation, 
suction or injection and porous medium. Micropolar fluids 
are referred to those fluids that contain micro-constituents 
that can undergo rotation which affect the hydrodynamics 
of the flow. In this context, they can be distantly non-
Newtonian in nature. The basic continuum theory for this 
class of fluids was originally formulated by Eringen 
(1966). The theory of thermo micropolar fluids has been 
developed by Eringen (1972) by extending the theory of 
micropolar fluids (1966)]. The Study of micropolar fluid 
mechanics has received the attention of several a 
research workers. Review of this study was provided by 
Ishak et al. (2007, 2008), Nazar et al. (2008) and 
Elbashbeshy et al. (2011). In the presented study, the 
effects of thermal radiation, magnetic field and internal 
heat  generation  on  heat  transfer  in  a  micropolar  fluid  
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Figure 1. Physical model and coordinate system. 

 
 
 
along a vertical porous stretching surface with variable 
viscosity has been investigated. 
 
 
Mathematical Formulation 
 
Consider steady, laminar, two-dimensional and magneto 
hydrodynamics boundary layer flow of a micropolar fluid 
along a vertical porous stretching surface in the presence 
of heat generation or absorption, thermal radiation, 
variable viscosity and viscous dissipation effect. The fluid 
is assumed to be viscous and has constant properties 
except the viscosity.   Two–equal and opposite forces are 
introduced along x-axis so that the surface is stretched 
keeping the origin fixed and y-axis is perpendicular to it. 
A uniform magnetic field  Bo is imposed along the y-axis  
and the magnetic Reynolds  is assumed to  be small so  
that  the  induced magnetic field  is neglected. No electric 
field is assumed to exist and the hall effect of 
magnetohydrodynamics is neglected. The  fluid is  
considered  to  be  gray; absorbing–emitting radiation but 
non-scattering medium and Roseland approximation  is  
used  to describe the  radiative heat flux in the energy 
equation. The radiative heat flux in the x-direction is 
considered negligible in comparison to the y-direction. 

The governing boundary layer equations may be 
written as follows.(Figure 1) 
 

0
u v

x y

∂ ∂
+ =

∂ ∂                                   (1) 
2

01
(( ) ) ( )

Bu u u S N
u v S g T T u

x y y y y

σ
µ β

ρ ρ ρ

∗

∞

∞ ∞ ∞

∂ ∂ ∂ ∂ ∂
+ = + + + − −

∂ ∂ ∂ ∂ ∂
(2) 

2

2
(2 )sN N N S u

u v N
x y j y j y

υ

ρ ρ∞ ∞

∂ ∂ ∂ ∂
+ = − +

∂ ∂ ∂ ∂          (3) 
2

20

2

1
( ) ( ) r

p p p p

Q qT T k T u
u v T T

x y c y c c y c y

µ

ρ ρ ρ ρ
∞

∞ ∞ ∞ ∞

∂∂ ∂ ∂ ∂
+ = + − + −

∂ ∂ ∂ ∂ ∂
   (4)

                                                    

Where u, v are the velocity component along  x, y 
directions respectively, ρ∞ is the density of the ambient 
fluid, µ is the coefficient of dynamic viscosity, S is the  
coefficient  vortex viscosity, N is the angular velocity  or 
micro rotation, g is the acceleration due  to   gravity  , β is 

the  volumetric coefficient  of thermal  expansion, sυ  is 

the spin-gradient viscosity ,  σ
*
 is the electrical 

conductivity of the  fluid, Bo is  the magnetic induction,  j  

is  the  micro-inertia  per unit mass,  T is  the temperature 

of  the fluid within   boundary  layer, ∞T   is  the 

temperature of  the ambient fluid, k is the thermal 
conductivity,  cp  is the specific heat  due   to  constant 
pressure,  Qo is the  heat  generation or absorption 
coefficient and qr is  the radiative heat  flux. 
The boundary conditions for this problem can be written 
as 

0
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Where c is stretching coefficient, m is the stretching 
index, Tw is the temperature at the surface and n is the 
micro rotation   parameter (o ≤ n ≤1). It should be 
mentioned that the  case n = 0 . we obtain  N = 0 which 
represents a no – spin condition i.e. the microelements in  
concentrated particle  flow  close to the  wall are not able   
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to rotate (called strong concentration). The case n= 0.5 
represents vanishing of the anti-symmetric part of the 
stress tensor (called weak concentration). The case n=1 
is representative of turbulent boundary layer. The positive 
and negative values of vo indicate injection and suction   
respectively, while vo= 0 correspond to an impermeable 
surface. 

By using Roseland approximation qr take the form 
4
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where σ1 is the Stefan-Boltzmann constant and k1 is the 
mean absorption coefficient. We assume that  the  
temperature difference within the flow  are sufficiently 
small  such  that  T

4  
may be expressed  as a linear 

function  of temperature. This is accomplished by 
4 4 3 3 4
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By using  Eqs. (6)  and (7) in  (4)  gives 
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The following non-dimensional variables are 
introduced in order to obtain the non-dimensional 
equations: 
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Where ψ is the stream function defined as  u
y

ψ∂
=

∂
   

and  v
x

ψ∂
= −

∂
  , which identically satisfy (1). We have 

from equation (9), that 
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Where η is the similarity variable, ƒ is the dimensionless 

stream function, φ  is the dimensionless micro rotation, θ 

is the dimensionless temperature, A is constant, p is the 
temperature index and prime denotes differentiation with 
respect to η. 

For a viscous fluid, Ling and Dybb (1987) suggest a 
viscosity dependence on temperature T of the form 
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Where γ1 is the thermal property of the fluid and µ∞  is 

the coefficient of dynamic viscosity of the ambient fluid 
Equation (11) can be written as (7) 
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In the above relation (13) both α and Tr are constant 
and their values depend on the reference state and γ1. In 

general, 0α > for liquids and 0α < for gases. 

The dimensionless temperature ( )θ η can be written as 
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and its value is determined by the 
viscosity/characteristics of the fluid under consideration 

and temperature difference 
w

T T T∞∆ = − . Substituting 

equation (14) into (11), we obtain 
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Now substituting Eqs. (9), (10) and (15)  into Eqs. (2), (3) 
and (8) we obtain the following  non-dimensional 
equations. 
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The assumption of Prandtl number inside the 
boundary layer may produce unrealistic results. 
Therefore, the Prandlt number related to the variable 
viscosity is defined by 
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Substituting eq. (19) into (18), we obtain 

21
(1 ) Pr [ ( ) ] 0.

2

r
v c

r

m
R f pf Q E f

θ θ
θ θ θ θ

θ

− +
′′ ′ ′ ′′+ + − + + =   (20) 

In the case , 0
r

θ η→ ∞ =   the variable Prandtl 

number Prν =  Pr∞ and equation (20)  reduces to (18). In 

the case ,  i.e.  0η θ→ ∞ =  , the variable Prandtl 

number Prν = Pr∞. Equation (20) is corrected non-
dimensional from of the energy equation for modeling 
thermal boundary layer flows with variable viscosity. 

The dimensionless form of the boundary conditions 
becomes 
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Numerical Solutions 
 
The Equations (16-18) can be converted to a system of 
differential equations of first order, by using  

1 2 3 4 5 6 7

1 2

2 3

2

3 2 1 3 2 7 3 52

6 6

4 5

5 2 4 1 5 4 3

6

6 7

6

7

, , , , , , ,

,

,

1
( ) ,

2 ( )

,

3 1 1
( ) ( ) (2 ),

2 2 2

,

(1 ) (1 )[

r r

r r

r

r

rv

r

y f y f y f y y y y

y y

y y

m
K y my y y My y y Ky

y y

y y

K m m
y y y y y K y y

y

y y

y
R y P

φ φ θ θ

θ θ
γθ

θ θ

θ
ξ ξ

θ

θ

′ ′′ ′ ′= = = = = = =

′=

′ =

+
′+ = − + − + −

− −

′ =

− +
′+ = − + +

−

′ =

′+ =− − 2

1 7 2 6 6 3

1
] .

2
rv c

m
y y py y Qy P E y

+
− − −

(22)

 

Subjected to the initial conditions 
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Where a, b and c are unknown to be determined as a 
part of the numerical solution. Using mathematica, a 
function (F) has been defined such that F [a, b, 
c]:=NDSolve [system (22),(23)], The value of a, b and c 
are determined upon solving the equations, 

2 max 4 max 6 max
( ) 0,  ( ) 0 and ( ) 0y y yη η η= = =  to get the 

solution, NDSolve first searches for initial conditions that 
satisfy the equations, using a combination of Solve and a 
procedure much like Find Root. Once a, b and c are 
determined the system (22) and (23) is closed, it can be 
solved numerically using the ND Solve function. 
 
 
RESULTS AND DISCUSSION 
 
The set of non-linear ordinary differential equations (16), 
(17) and (20), satisfying the boundary conditions (21) 
have been solved numerically using the mathematica 
method for several values of the involved parameters , 
namely the vortex viscosity parameter (K), local magnetic 
field parameter (M) , local spin gradient viscosity 

parameter (ξ ) , Eckert number (Ec), local heat source 

(or sink) parameter (Q), Richardson parameter (γ), 
Temperature index (p), Stretching index (m) and variable 
Prandtl number (Prv ). It is found that the values of the 

local Nusselt number ( xxNu Re/ ) compare with the 

results reported by Ali (19) and Rahman et al (20) as 
shown in Table 1. These comparisons show excellent 
agreement between the results. 
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Table 1. Comparisons of θ´(0)  to previously published data at Pr∞ = 0.7, K =0, R= 
0, ξ = 0, γ = 0, M = 0, Q = 0, Ec = 0, m = 0 and p = 0 for different values of θr .  

 

θr Ali (Ali, 2006) Rahman (Rahman et al, 2009) Present results 

−8.0 −0.3432339 −0.3436723 -0.3432256 

−0.1 −0.1652394 −0.1661476 -0.1660486 

−0.01 −0.0561845 −0.0764055 -0.0544607 

8.0 −0.3555822 −0.3560031 -0.3579886 

 
 

        

Figure 2. Temperature profiles ( )θ η for some values           Figure 3. Temperature profiles ( )θ η for some values 

           of   Pr                                                                            of 
rθ

 
 
 

          
Figure 4. Temperature profiles ( )θ η for some values        Figure 5. Temperature profiles ( )θ η for some values        

            of  Q                                                                               of   Ec                                                                                                                  
 
 

Figure (2) represents , the temperature profiles for 
different values of variable Prandtl number Prv .It seen 
that the effect of variable Prandtl number Prv is to 
decrease temperature throughout the boundary layer 
,which results in decrease of the thermal boundary layer 
thickness with the increase of values of Prv. The increase 
of variable Prandtl number means slow rate of thermal 
diffusion. It is also observe that for a fixed value of Prv, 
the temperature corresponding to the case of fluid suction 
is lower compared to the case of fluid injection. That is, 
the thickness of the thermal boundary layer is higher for 
fluid injection than for fluid suction. 

Figure (3) represents the temperature profiles for 
different values of fluid viscosity parameter θr. The figure 
indicates that the boundary layer thickness decreases 
with the increase of values of fluid viscosity θr for both 
cases of fluid suction and injection. It is seen that for fluid 

suction, the temperature decreases very rapidly with η. 
Whereas in the case of fluid injection, the temperature 
decreases very steadily. Further it is observed that the 
decrease in the temperature with θr is not very 
remarkable near the boundary in this case. This effect is 
much noticeable little away from stretching surface. 

Figure (4) illustrates the dimensionless temperature 
profiles for different values of the heat generation (or 
absorption) parameter Q. It is observed from this figure 
the boundary layer generates the energy, which causes 
the temperature profiles to increase with increasing the 
heat generation for both cases of fluid suction and 
injection. But the opposite effect is observed for the case 
of heat absorption. The thickness of the thermal 
boundary layer is high for fluid injection than for fluid 
suction for both cases of heat generation or absorption. 

Figure  (5)  represents  the  temperature  profiles  for 
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Figure 6. Temperature profiles ( )θ η for some values          Figure 7. Temperature profiles ( )θ η for some values      

               of m                                                                                        of p 
 
                                                                    

          

Figure 8. Temperature profiles ( )θ η for some values          Figure 9. Temperature profiles ( )θ η  for some   values       

               of M                                                                                         of  R                                                                               
 
 
various values of Eckert number Ec. This figure indicates 
that the temperature profiles have an increasing effect for 
increasing values of Ec. therefore, increasing the Eckert 
number Ec broadens the thickness of the thermal 
boundary layer for both cases suction and injection . 

Figure (6) explains the effect of stretching index m on 
the temperature profiles. This figure indicates that the  
temperature profiles decrease quite rapidly with an 
increase of m for the case fluid suction while the 
temperature profiles increase for the case fluid injection. 

Figure (7) represents the temperature profiles for 
various values of the temperature index p. From this 
figure we see that the temperature profiles decrease very 
rapidly in the case of fluid suction compared to the case 
of fluid injection with the increase of p. 

Figure (8) represents the temperature profiles for 
various values of magnetic field parameter M.The 
presence of a magnetic field has a tendency to produce a 
drag-like force called the Lorentz force which acts in the 
opposite direction of the fluid motion. This causes the 
fluid temperature to increase as the magnetic field 
parameter M increases. 

Figure (9) represents the temperature profiles for 
various values of the thermal radiation parameter R in the 
boundary layer. This figure indicates that the effect of 
thermal radiation is to enhance heat transfer because of 
the fact that thermal boundary layer thickness increase 
with increase in thermal radiation. Thus it is point out that 
the radiation should be minimized to have the cooling 
process at a faster rate.  
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Table 2. Results of the local Nusselt number xxNu Re/   

in case of fw =1,-1 for different values of   Richardson 
parameter γ and variable Prandtl number Prv at  Ec =0.2, 
�=1.5, �=1, �=0.5, �=1.5, �=1, �=0.5, �=1, �=0.5 and 

2
r

θ =
 

 

Prv 1.46 5.94 

γ fw  = 1 fw  = -1 fw  = 1 fw  = -1 

2 2.126459 0.921387 6.523081 1.275471 

4 2.297193 1.099709 6.666328 1.472371 

6 2.414686 1.208343 6.724279 1.584499 

8 2.500687 1.281266 6.901759 1.657344 

10 2.564690 1.329710 6.918758 1.684404 

 
 

Table 3. Results of the local Nusselt number 

xxNu Re/  in case of fw =1,-1 for different values of   

thermal radiation parameter R and Local heat source 
(or sink) parameter Q at Ec =0.2, �=1.5, �=1, γ=10, Prv 

=1.46, �=1.5, �=1, �=0.5, �=0.5 and 2
r

θ =
 

 

R 0.5 1 

Q fw  = 1 fw  = -1 fw  = 1 fw  = -1 

-2 4.206045 2.525405 2.648071 1.708477 

-1 2.855495 1.597121 2.388218 1.451863 

0 2.513991 1.259472 2.091386 1.160620 

1 2.107175 0.860049 1.737748 0.817026 

2 1.587357 0.376250 1.285922 0.399245 

 
 
 

Table (2) show the local Nusselt number xxNu Re/  

for different values of Richardson parameter γ and 
variable Prandtl number Prv. This table show that for a 

fixed value of Prv, the local Nusselt number xxNu Re/  

increases with the increase of the Richardson parameter 
γ and variable Prandtl number Prv for both cases of fluid 
suction and injection. Thus, applying suction/ injection 
one can control the heat transfer from heated surface to 
the fluid. 

Table (3) show the local Nusselt number xxNu Re/  

for different values of heat generation (or absorption) 
parameter Q and thermal radiation R. From this table we 
show that for a fixed value of thermal radiation parameter 
R the local rate of heat transfer from the surface to the 
fluid decrease with the  increase  of  the  heat  generation  
parameter for both cases of fluid suction and injection. 
This is due to the fact that as heat is generated, the 
thermal state of the surrounding fluid increase, as a 
consequence, the rates of heat transfer from the surface 

to the fluid decreases. Table (3) also show that for a fixed 
value of heat generation or absorption parameter the 

values of xxNu Re/  decrease with the increase of the 

thermal radiation parameter R for both fluid suction and 

injection. On the other hand, values of xxNu Re/  

decrease very rapidly with the increase of the thermal 
radiation parameter for the case suction compared to that 
of fluid injection. 

Table (4) shows the local Nusselt number xxNu Re/  

for different values of magnetic field parameter M and 
viscosity parameter θr. This table show that for a fixed 
value of θr, the local Nusselt number 

xxNu Re/ decreases with increase of the magnetic 

field parameter M for both cases of fluid suction and 
injection. From here  we found that for a fixed value of M, 

the local Nusselt number xxNu Re/ increases with the 

increase  of variable viscosity θr. 
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Table 4. Results of the local Nusselt number 

xxNu Re/  in case of fw =1,-1 for different values of   

magnetic field parameter  M and Variable viscosity 
parameter  θr at Ec =0.2, R=1, Q=0.5, �=1.5, γ=10, Prv 

=1.46, �=1.5, �=1, �=0.5, and �=0.5  
 

θr 2 5 

M fw  = 1 fw  = -1 fw  = 1 fw  = -1 

0 2.635628 1.381881 3.037265 1.479986 

0.5 2.600075 1.356747 2.997939 1.456576 

1 2.564690 1.329710 2.958341 1.430489 

1.5 2.529706 1.299828 2.918862 1.400753 

2 2.495270 1.272607 2.897410 1.372954 

 
 

Table 5. Results of the local Nusselt number 

xxNu Re/  in case of fw=1,-1 for different values of 

thermal radiation parameter R and Temperature index p at  
Ec =0.2, Q=0.5, �=1.5, γ=10, Prv=1.46, M=1, �=1, �=0.5, 

�=0.5 and 2
r

θ =  

 

p 1 2 

R fw  = 1 fw  = -1 fw  = 1 fw  = -1 

0 1.901483 0.571333 2.144131 0.942772 

1 2.347247 1.046684 2.764039 1.574413 

2 2.712083 1.434293 3.243446 2.083120 

3 3.031310 1.772078 3.661389 2.523179 

4 3.319712 2.075794 4.037864 2.917297 

 
 
 

Table (5) shows the local Nusselt number 

xxNu Re/ for different values of thermal radiation 

parameter  R and temperature index p for both cases of  
fluid suction and injection. From this table we can see 

that the values of xxNu Re/  increase with the 

increase of temperature index p for fluid suction. The 
opposite trend is  observed for the case of fluid injection. 
 
 
CONCLUSION 
 
In this paper, we have studied the problem of the 
boundary layer flow of a micropolar fluid and heat transfer 
on a vertical stretching surface with a variable  viscosity 
and internal heat generation in the presence of magnetic 
field. The governing boundary layer equations were 
solved numerically .The development of the heat transfer 
rate at the surface, as well as the temperature  has been 
illustrated in the tables and graphs. A discussion of the 
effects of the variable Prandtl number, Richardson 
parameter, Variable viscosity parameter, thermal  

radiation parameter , Magnetic field parameter, Local 
heat source (or sink) parameter and Temperature index  
on  the heat transfer rate at the surface in the case 

0.5, 1, 1wn f= = −  has been obtained. 

From the present investigation, the following 
conclusions may be concluded. 

The local Nusselt number decreases with the increase 
of the heat generation parameter, thermal radiation 
parameter, magnetic field parameter and increases with 
the increase of the heat absorption parameter, variable 
Prandtl number, variable viscosity parameter, 
temperature index parameter and Richardson parameter. 
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