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Reconstructing the regulatory relationships between genes using multiple time point expression profile 
data (EPD) is a powerful computational method to gain insight into gene networks. One such method 
uses binary on/off relationships to characterize the under- and over-expression of genes acting in 
unison. This approach uses only the relative expression levels of the genes of interest at multiple time 
points. One aspect of the EPD these methods often fail to account for is the inherent variability in the 
measurements of the gene expression levels. We characterize the variability in expression levels for a 
single time point to measure the inherent variability in that dataset. We then generate multiple new 
expression profile data samples from the original data and measured variability. These new datasets 
are then binarized to test whether the gene network relationships change due to the random sampling. 
This also allows us to test different variation magnitudes to set limits on how large the inherent 
variability should be to yield reproducible results for the binary gene network method. We find that the 
current variabilities in EPD are too large to yield reproducible gene regulatory networks, but that the 
data for some particular genes are sufficient to generate reproducible binarizations.   
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INTRODUCTION 
 
One of the main outstanding problems in molecular 
biology is to determine the functional relationships 
between differentially regulated genes. This field is 
complicated by the fact that all of the genes in an 
organism share a common genome but protein 
expression can vary dramatically depending on the 
position of the expressed gene within the organism, 
external factors such as heat and light and temporal 
variation. Since the advent of the genomic era a growing 
body of biological data has become available which can 
begin to describe these differences in gene expression. 
In particular, DNA microarray technology is now able to 
provide a snapshot of the expression levels of all of the 
genes in a particular organism at one time point for a 
given tissue sample (Bassett DE et al., 1999; Eisen MB 
et al.,  1998).  Various  computational  techniques  have  
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been developed to help analyze these data sets including 
Bayesian Networks (Zou M and Conzen SD, 2005; Yu J 
et al. 2004; Werhli AV et al., 2006; Friedman N et al., 
2000), Differential Equations (Gardner TS et al., 2003; 
Gebert J et al., 2007; Quach M et al., 2007), Fuzzy Logic 
(Ressom H et al., 2003) and Information Theoretic 
Models (Stuart J.M et al., 1003; Margolin AA et al., 2006; 
Rao A et al., 2007). One limitation of these methods is 
that they require large amounts of data to function 
effectively and often cannot be applied to the types of 
sparse time point datasets which are publically available 
(Baldi P and Long AD, 2001). In particular, most of these 
methods require that the measured expression levels are 
accurate, which is often not a valid assumption due to 
inherent measurement inaccuracies in expression profile 
data.  

Another set of methods which can infer regulatory 
relationships between expressed genes are called 
Boolean Regulatory Networks. These methods have 
been extensively studied because they simplify the  



 
 
 
 
functional analysis to the point that current data sets are 
biologically meaningful (Martin S et al., 2007; Faure A et 
al., 2006; Lähdesmäki H et al., 2003; Liang S et al., 
1998). Boolean methods make the simplifying 
assumption that genes are either expressed (1) or 
unexpressed (0). This allows relationships between 
genes that are being coregulated to be highlighted and 
reduces much of the difficulty with inaccurately measured 
expression profiles since all that is required for the 
Boolean analysis is a determination of whether a gene is 
being expressed or not expressed at a given time point. 
With these simplifying assumptions, Boolean modeling 
can be used to reconstruct gene regulatory relationships 
including whether sets of genes are coexpressed or have 
a regulatory effect on each other. For these methods to 
function properly an effective binarization technique is 
required which can categorize the genes into on/off 
binary data that represents the biological meaning of the 
original raw data. The package called ‘BoolNet’(Müssel C 
et al., 2010) in the R programming language  (R 
Development Core Team, 2005) is statistical program 
that can construct such binarizations from a given 
expression profile dataset and then further generate a 
gene regulatory network from these binarizations. It is 
often assumed though that the when dealing with 
Boolean networks the fact that the methods to binarize 
time point data are full developed implies that the 
binarizations are accurate. In this research we test this 
underlying assumption by doing a statistical analysis of 
the variation inherent in a given expression profile 
dataset using the repeated gene measurements. We then 
generate new datasets with the same average 
expression levels and variability as in the original dataset 
and using these new randomly generated datasets test 
the consistency of the binarization methods to produce 
biologically meaningful on/off expression profiles. This 
analysis allows a determination of how large the variation 
in the expression profile data should be to yield 
reproducible results for the binary gene network method. 
 
 
MATERIALS AND METHODS 
 
Data Set  
 
The expression profile dataset used in this work 
consisted of 7 distinct time points taken for the test 
species Saccharomyces cerevisiae (Yeast) under which 
the Glucose levels changed to study the metabolic effect 
of glucose deprivation in yeast (DeRisi JL et al., 1997). 
The initial 5 time points had non-zero glucose levels 
whereas the glucose for the final two time points was 
completely exhausted. The raw data was downloaded 
from the Metabolic Time course website 
(http://cmgm.stanford.edu/pbrown/explore/additional.htm)
S. cerevisiae has been widely used to investigate gene 
expression since this genome has been extensively cha 
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racterized, the genetic regulatory mechanisms               
for most genes in yeast are already known,                   
and gene expression profile chips are cheaply        
available to further study this test organism. 
 
 
Data Set Preprocessing 
 
The original raw expression profile data was 
preprocessed in two ways to make the                        
data from the different time points as                
comparable as possible in the standard fashion. First a 
background intensity correction was performed to 
normalize the spot intensities against the ambient 
background of the overall expression data. This 
normalization was performed on both the red and green 
data channels which then yielded the standard      
log2(R/G) data values. These intensity values             
were then Lowess normalized to set the average log 
offset to zero as expected since most genes are 
assumed to not dramatically change from one      
timepoint to another. The Lowess normalization was 
performed using the online MIDAW (Romualdi C et al., 
2005) normalization server.  
 
 
Measurement of Variability in the Expression Profile 
Data 
 
Using the Yeast Dataset described above, all genes in 
the gene expression profile data with multiple 
measurements for a single time point were extracted. 
There were 52 distinct genes with two distinct 
measurements for each of the time points.  
 
 
Stochastic Sampling of Paired Measurements 
 
To determine the expected profile distribution from the 
paired samples a randomly generated dataset consisting 
of normally distributed data with a mean of 0 and a 
variance of 1 were generated using the standard PERL 
algorithm from the Perl Cookbook (Christiansen T and 
Torkington N, 1998). The expected mean and variance of 
the paired samples measurements for the 52 sample size 
was determined from these randomly generated 
datapoints. 
 
 
Binarization of EPD  
 
The package BoolNet which was developed in               
the R programming language was used to perform        
the binarizations of the seven time point datasets.        
Two different parametric methods of binarization           
(k-means and edge detector) were tested by            
setting  the  appropriate  options  for BoolNet. 
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Table 1. Average magnitude between the paired expression profile values for the 52 
duplicated genes at each time point in S. cerevisiae. 

 

 
 
 
 
 
 
 
 

Table 2. The standard deviation, and upper and lower bounds on the variability in the 

measurement of the gene expression values for each of the seven time points. 
 

Time point 1 2 3 4 5 6 7 

95% Lower Bound 
EPD 

0.153 0.166 0.159 0.135 0.178 0.317 0.285 

Average Expected 
EPD 

0.185 0.201 0.193 0.163 0.216 0.384 0.346 

95% Upper Bound 
EPD 

0.234 0.254 0.243 0.206 0.273 0.486 0.437 

 
 
 
RESULTS AND DISCUSSION 
 
Measurement of Variability in the Expression Profile 
Data 
 
Time series expression profile data records the 
concentrations of selected genes at several distinct time 
points to determine how changes in the gene expression 
levels correlate with specified treatment effects. For a 
single time point the same DNA sample is used to 
determine the expression levels of all of the genes on the 
microarray chip. For many such microarray chips there 
are repeated measurements for some of the genes on 
the chip. The expression levels for these repeated genes 
provide a measure of the variability in the expression 
profile data. For example in the microarray chip for S. 
cerevisiae the gene YAL001C is measured two times. 
When the variability in the measured expression levels is 
low, these two values provide an accurate measure of the 
true expression level and the difference between the two 
measured values is small. As the variation in the 
measured expression levels increases the average 
difference between the two random measurements 
should increase as well. To test this we extracted all of 
the genes with repeated measurements from the 
expression profile data of the seven time point series 
data for S. cerevisiae and determined the magnitude of 
the differences between the paired data. For this data set 
there were 52 genes with repeated measurements and 
the average magnitude of the differences for this data for 
each time point are shown in Table 1. These            
values quantify how much variability is present                 
in the expression profile data, but what is required           
is the relationship between these deviations                  
and  the  variation  in the original gene expression values.  

Stochastic Sampling of Paired Measurements 
 
To determine how large the average magnitudes 
between paired measurements sampled from the same 
distribution, we used a sampling function with a mean of 
zero and standard deviation of one to experimentally 
determine these values. Using the Gaussian normal 
sampling function from the Perl Cookbook

21
, we 

generated 10,000 datasets of fifty random samples each 
from a distribution with a mean of zero and a standard 
deviation of one. To verify that this sampling function was 
generating random samples with the correct properties, 
we measured the averages and standard deviations 
within each of these 10,000 datasets and found that the 
overall average of these 500,000 random samples was 
0.0005 with a standard deviation of 0.9988. Although we 
used the standard Gaussian sampling function, it is still 
important to verify that the routine is working correctly 
and that the generated properties are as expected. Next 
we paired the data from these 10,000 datasets to 
generate 5,000 pairs of sample values in groups of fifty. 
We then measured the magnitudes between these pairs 
and determined the average and standard deviation for 
each group of fifty data points. The overall average of the 
magnitudes for the groups of fifty was 1.126 ± 0.12 and 
the average standard deviation within these samples was 
0.849 ± 0.10. This directly relates the measured average 
magnitudes between the pairs of samples and the 
standard deviation (STD) of the original distribution. Due 
to the small group sizes of fifty there is a reasonable 
amount of variability about this value. Therefore it is most 
accurate to say that the standard deviation of the 
distribution from which the paired data was drawn should 
95% of the time lie in the range of 0.891 to 1.366 of the 
average magnitude of the paired data. This provides a  

Time point 1 2 3 4 5 6 7 

Average Magnitude 
deviation 

0.209 0.226 0.217 0.184 0.243 0.433 0.389 
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Figure 1. The total number of genes with the same binarization as in the original 
data for the two BoolNet methods. The Lower and Upper STD values show the 
number of genes with the same binarization as in the original dataset for the 95% 
bounds on the predicted variation in the expression values. 

 
 
direct relationship between the measured deviations 
shown in Table 1 and the variability in the original 
distribution. With this measure of the standard deviation 
of the gene expression data, it is possible to accurately 
model the original data using the actual expression 
values for each gene.  
 
 
Binarization of EPD  
 
To see which of the two binarization methods used in the 
BoolNet package produces the most robust model for the 
inputs to the gene regulatory analysis, we first tested the 
two methods on the original expression dataset. The k-
Means method analyzed the 6,153 genes in 
approximately 34 seconds and the edgeDetector method 
analyzed the same data in just under 4seconds. The 
binarization results from these two methods were 
dramatically different with only 39.7% of the genes being 
binarized the same way. For expression profile data 
although the edgeDetector method is almost 10 times 
faster than the k-Means method, it is probably not an 
appropriate choice in general since this method focuses 
on the largest difference in expression between two time 
points. If one time point is highly over- or under-
expressed this would bias the binarization to segregate 

only that time point even if other timepoints had high or 
low expression levels.  Most likely this is one reason the 
k-Means method is set as the default binarization 
method.  

Then, we generated randomly sampled datasets with 
the means of the original data and variation based on the 
variation analysis described above. For each of the 
following analyses we generated 1,000 distinct datasets, 
with the standard deviations for each of the time points 
shown in Table 1. For each of the three measures of the 
amount of variation in the gene expression values (i.e. 
average, upper- and lower-bounds on the variation in the 
system) the 1,000 datasets were stored for later use and 
then analyzed using the BoolNet package. The two 
distinct R BoolNet binarization methods were run on each 
of the three groups of 1,000 datasets to determine the 
binarization for each gene. This analysis took on average 
over eight hours per 1,000 sample dataset for the k-
Means method and approximately an hour for the 
edgeDetector method. Figure 1 shows the number of 
genes which had the same predicted binarization as in 
the original data set. Ideally for a method to be robust, all 
of the genes should have the same binarization in the 
original dataset and for the generated datasets. As can 
be seen in Figure 1, out of the 6,153 genes in the S. 
cerevisiae  expression  profile  data,  roughly  30%  were  
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Figure 2. The %conserved binarization for three genes with different sizes of variation in the sampled 
distributions ranging from 0 to 600%.  

 
 
found to have conserved binarizations for the randomly 
sampled datasets. The edge Detector method performed 
better over the entire tested range with the predicted 
%conserved binarization falling between 30 -40% with an 
average of 34%. The k-Means method fell in the same 
general range with the expected values lying between 23 
-34% with the average value lying slightly above 28%. In 
all of these cases the binarization methods are clearly not 
robust to variability in the original expression data, but the 
predicted values were remarkably consistent having only 
30 genes standard deviations for the conserved 
binarization within each of the 1,000 generated data sets. 
Ideally the conserved binarization should share 95% or 
99% conservation to the original dataset so that the 
predicted regulatory relationships could be based on 
binarization values which are not highly dependent on the 
variability inherent in the expression profile data.  
 
 
Single Gene Binarizations 
 
Although the total number of genes with conserved 
binarizations was remarkably consistent over a range of 
STD values, the amount of conservation for particular 
genes was much less conserved. For example, for the 
average predicted STD values using the k-Means 
method, 28.5% of the genes had conserved binarizations. 
Looking at individual genes across the 1000 generated 
samples, there was a huge amount of variation in the 
binarization conservation ranging from only 7 conserved 
cases for the gene YPL082C all the way up to greater 
than 95% conservation for 80 different genes including 

 gene YHL021C.  
To get a better grasp on the changes in conserved 

binarization for different variation amounts, we chose 
three genes which fell in the high (YHL021C), medium 
(YJL066C) and low (YNL086W) conservation regimes to 
test how the %conservation changed with different 
variability sizes. For each gene, 1,000 randomly sampled 
datasets for the 7 time points were generated for different 
variability sizes. To exhaustively test these relationships 
sample data sets were generated ranging from 10% to 
600% the size of the measured variability in 10% 
variability steps. This produced a total of 60 datasets with 
increasing variability sizes for each gene with 1000 
estimates for the gene expression values. For each of 
these datasets, the BoolNet k-means binarization method 
was then run to determine whether the generated 
expression profile values yielded the same binarization 
as was found for the original data. This result is shown in 
Figure 2. where the dashedline for 100% shows the 
%binarization conservation for the actual measured 
amount of variation from the gene expression values.  

As the amount of variation approaches 0 the 
%binarization conservation should approach 100% as 
would be expected since a zero percent variation is 
exactly identical to the original data. As the size of the 
variation grows larger the %binarization conservation 
decreases as expected since for large variations the 
relationships between the time point data are completely 
randomized.  Figure 2 clearly shows that the 
%binarization conservation for these three genes can 
vary widely while following the same general pattern. The 
level of %binarization conservation is dependent on the  
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Figure 3. The gene expression values and measured variation for the three genes A) YHL021C, B) 
YJL066C and C) YNL086W. The normal curves for each time point have the average expected standard 
deviations shown in Table 2 and unit area. 

 
 
actual pattern of gene expression at the different time 
points for that gene. Figures 3A) - C) show the pattern of 
gene expression for the same three genes examined in 
Figure 2. For each time point, the measured amount of 
variation around the expression value is shown and these 
figures are a visual depiction of the distributions the 
random samples are being drawn from. The cutoff 
generated by the BoolNet binarization program is also 
show in these figures to clearly show the two groups of 
expression values being binarized to 0 and 1 
respectively. The pattern of expression values for gene 

YHL021C in Figure 3A) shows that the positions of the 
two time points on the left are far enough away from the 
five time points on the right that the amount of variation in 
the gene expression values does not often affect the 
binarizations for the sampled datasets. In Figures 3B) 
and 3C) the separation between the different time points 
are smaller leading to a greater change due to the 
variation in the data when sampling from these 
distributions. If the different time points are sufficiently far 
apart as is the case in Figure 3A) the variability in the 
expression data does not affect the ability of BoolNet to 
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Figure 4. The differences in centroids for the k-Mean binarization of the two groups for every gene in the S. 

cerevisiae sorted by magnitude, 4988 genes had centroids closer than 1 showing there was no significant differential 
expression. 

 
 
perform an accurate binarization. 
 
 
Biological Considerations 
 
The binarization algorithms used by BoolNet assume that 
there exists at least one of each state in the expression 
data. This means that if a particular gene is not 
differentially expressed the BoolNet package will still 
assign it a binarization with two distinct expression 
classes. From a mathematical standpoint the BoolNet k-
Means binarization routine correctly selects the optimal 
cutoff to produce the largest difference in centroids for 
the two groups of expression values, but whether the 
differences between these groups is biologically 
meaningful is a separate question. In general the 
minimum biologically meaningful difference in expression 
profile results is a 2-fold change in expression which is 
equivalent to a 1 difference in the log base 2 expression 
profile values. To have biologically meaningful 
binarizations the centroids for the two groups should be 
separated by at least 1 to ensure there is a possible 
change in expression between the different timepoints. 
Figure 4 shows the differences between the centroid 
values for the binarizations of the original 6153 genes.  
Using a standard 1 value cutoff as the minimum 
requirement for the two centroids of the expressed and 
non-expressed groups, 4988 of the 6153 genes were 
found to not be differentially expressed. When using the  

BoolNet package with expression profile data this cut on 
the gene expression data should always be performed 
before any analysis of the binarization relationships are 
undertaken. The 1 cutoff as shown in Figure 4 is a safe 
cutoff to remove most of the non-differentially expressed 
genes. Biologically most genes are not expected to be 
differentially expressed in general, but only under distinct 
treatment conditions which stress the system such as 
heat, low glucose levels, high or low light levels, the 
presence of heavy metals, etc.  

Taking into account the almost 5000 genes which are 
not differentially expressed, the percent conserved 
binarizations for the differentially expressed genes 
improves dramatically from 28.5% for the average STD 
values to 65.7% which is over a 2-fold improvement. 
Ideally this value would be over 95% so that the predicted 
binarizations are conserved the majority of the time, but 
this shows nicely the fact that trying to perform a 
binarization on data for which that value does not have a 
well defined meaning leads to poor results. Once the 
non-differentially expressed genes are accounted for, the 
BoolNet binarization routines do begin to better represent 
the data.  

There are two main points that can be taken away 
from this: 1) For accurate enough gene expression 
measurements, the binarization methods used in BoolNet 
will produce consistently robust gene regulatory 
predictions. 2) The variability in the gene expression 
measurements  are  currently  too  large  to  produce  



 
 
 
 
consistently robust predictions. Although for some genes, 
the expression pattern is distinct enough to overcome the 
inherent variability in the gene expression 
measurements.  

All in all, using a binarization method to classify 
expressed genes into expressed and unexpressed 
classes is a powerful technique to reconstruct gene 
regulatory relationships. It is important though to quantify 
the uncertainties in the system including the inherent 
variability in the expression profile measurements. 
Depending on the quality of the expression profile data 
and the pattern of the time series data, it is currently 
possible to reconstruct the gene regulatory relationships 
using BoolNet at least for some of the more highly 
differentially expressed genes. 
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