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Natural frequencies were analyzed (axial, torsional and flexural) and frequency response of a vertical 
rotor with a hard disk at the edge through the classical and complex modal analysis. The mathematical 
modeling was based on the theory of Euler-Bernoulli beam. The equation that rules the movement was 
obtained through the Lagrangian formulation. The model considered the effects of bending, torsion and 
axial deformation of the shaft, besides the gravitational and gyroscopic effects. The finite element 
method was used to discretize the structure into hollow cylindrical elements with 12 degrees of 
freedom. Mass, stiffness and gyroscopic matrices were explained consistently. This type of tool, based 
on the use of complex coordinates to describe the dynamic behavior of rotating shaft, allows the 
decomposition of the system in two submodes, backward and forward. Thus, it is possible to clearly 
visualize that the orbit and direction of the precessional motion around the line of the rotating shaft is 
not deformed. A finite element program was developed using Matlab ®, and numerical simulations were 
performed to validate this model. 
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INTRODUCTION 
 
Rotary machines are mechanical systems that have 
several applications, such as engines and electrical 
generators, hydraulic turbines, pumps, compressors, 
wellbore construction and others.  

The dynamic behavior of a mechanical system must 
be examined in its design phase so that you can 
determine whether it will present a satisfactory 
performance or not in its condition of the planned 
operation. The natural frequencies, damping factors and 
vibration modes of these systems can be analytically, 
numerically or experimentally determined.  

The study for rotary machines, however, requires a 
more careful and detailed analysis, because the rotation 
movement of the rotor significantly influences the 
dynamic comportment of the system, making the model 
parameters dependent on the rotation of the machine.  

The gyroscopic effect couples the rotation movement  
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and, as it’s known, it is dependent on the rotation speed 
of the rotor. Therefore, it is expected that the natural 
frequencies and vibration modes of a rotating machine 
also depend on the system speed. 

In this case, the so called precession modes arise, 
where the mass or geometrical center of each cross 
section of the rotor describes orbits around the line 
connecting them. The rotor presents a rotation that is the 
composition of two overlapping responses: a rotor 
rotation around itself and the rotating shaft flexed around 
its non deflected setting. The orbit can be described in 
the same direction as the self rotation, constituting itself 
in the so-called forward whirl, or it may have opposite 
direction, being named as backward whirl Souto (2000).  

It is then observed that in the presence of the 
gyroscopic effect matrix, the own speed of the rotor 
affects the value of the natural frequencies of the system. 
This fact explains the relation between natural whirl 
frequencies and rotation of the rotor itself, represented by 
the Campbell diagram. The skew-symmetric shape of the 
gyroscopic matrix implies in 2n distinct natural 
frequencies for each shaft  speed  rotation,  a  larger  and  
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another smaller one from each of the n natural 
frequencies of the system without rotation, generally 
corresponding to backward and forward modes da Silva 
(2004).  

Currently there are many studies regarding to the 
study of vibrations in rotating shafts, mainly in oil wells 
drilling, where the vibration problems in the drill string 
cause poor performance in penetration rate, shortening 
the lifetime of the bits, mechanical stress in the pipes, 
unexpected changes in the direction of drilling, besides 
the equipment failure in geosteering and geological 
mapping. 

Mathematical models have been evolving for decades, 
and one of the most powerful tools of numerical analysis, 
the finite element method, has performed a decisive role 
in the investigation of rotating mechanical systems.  

In its work on vertical rotors Dana (1987), it analyzes a 
stationary vertical rotor and, through the FEM, predicts 
the eigen values of rotating systems and discusses the 
effects of forward and backward whirl. An adaptation of 
previous FEM software for analysis of simple drill string, 
including nonlinear analysis is used in Cordovil (1991). 
Both works, however, does not include gyroscopic and 
gravitational effects in the structure.  

Drillstring can be analyzed as a vertical rotary axis in 
balance where three types of vibration can be 
experienced: axial, torsional and lateral vibration. 

An overall dynamic analysis of drill string is often 
complicated because the three types of vibration listed 
previously above may be present, at same time, as well 
as disorders associated with each type of vibration: 
forward and backward whirl associated with lateral 
vibration, stick-slip associated with torsional vibration and 
bit-bounce associated with the axial vibration, Alamo 
(2003).  

In Axisa et al. (1990), it is presented a dynamic model 
using FEM which includes the effect of bending and 
torsion, but these are treated in an uncoupled way. In 
Dunayevsky et al. (1993), it is employed the use of FEM 
in a model to calculate the modal characteristics in drill 
strings, however, the model is limited to parametric 
resonance vibrations evenly distributed in beams 
supported on the edges. In this case, as in previous work, 
the formulations do not deal with gravity and gyroscopic 
effects in these structures. 

The tool of classical modal analysis provides reliable 
results in stationary structures and has been widely used 
for this purpose. In the case of rotating machines, this 
kind of approach involves a series of limitations as for its 
use in determining the vibration characteristics of the 
system Ewins (1998).  

The use of modal analysis on rotating machinery 
requires a more rigorous theoretical improvement. This is 
basically due to the spin effect on which the structure is 
subjected. The fact of the rotation existence in the 
structure causes to emerge on the system the so called 
Coriolis acceleration due to rotation of  the  rotor  around  

 
 
 
 
another axis, than the rotation itself. These accelerations 
lead to the rise of gyroscopic forces.  

The technique of complex modal analysis was 
developed by Lee (1991). The work of Kessler (1999) 
and Souto (2000), deal with the methodology of the 
technique in a more understandable way, with examples 
and applications, however, the approach is more 
superficial. Basically the methodology consists in using 
complex coordinates to describe the node movement of 
the structure. This new coordinate system allows to 
incorporate the directionality of the modes or dismember 
them in two sub-modes (forward and backward whirl). 
This is one of the advantages of this methodology, where 
the identification of the whirl movement is a very 
important step in the analysis of a rotating machine 
because these movements directly affect the lifespan of 
the rotor.  

The proposed work is about the implementation, in a 
MATLAB ® environment, of a finite elements system for 
calculating the natural frequencies and hence obtaining 
Campbell diagrams and charts to complex modal 
analysis of rotating shafts subjected to gyroscopic and 
gravitational effects. 

In this paper, the finite element method is employed 
for modeling rotating vertical tubular structures with 12 
degrees of freedom at each node, using elements of 3D 
Euler-Bernoulli beams type. 

The gyroscopic and gravitational effects are 
considered in the model. The implementation in MATLAB 
®, allows the input and output data to be properly 
modified to other types of structures and analysis. 

The natural axial, torsional and transverse frequencies 
may be obtained as well as Campbell diagrams, graphs 
with complex and traditional modal analysis. 
Comparisons are made between the complex and 
classical modal analysis, focusing on the easiness of 
whirl modes observation, since the complex modal 
analysis allows clear distinction in separate curves for the 
forward and backward whirl mode. 
 
 
Mathematical modeling 
 
Basic concepts 
 
This present formulation was based on the work of 
Alnaser (2002), Bazoune et al. (2001) and Khulief et al. 
(1997) and considers the following hypothesis: linear, 
homogeneous and isotropic elastic material, axi-
symmetric rotor and, besides, shifts refer to the central 
axis line of the component and the damping structure 
was disregarded. Figure 1 illustrates the coordinate 
system adopted for the rotation system modeling. The 
XYZ axis refer to the undeformed system and the xyz 
axis system after the deformation of the element 

The xyz coordinate system is rotated in relation to the 
XYZ system according to the set of angles shown in Fig-  
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Figure 1. Schematic drillstring, Bashmal (2004). 

 
 

 
 

Figure 2. Generalized coordinates system. 

 
 
 
ure 2, where the general orientation of the cross section 
of the beam element can be obtained by rotation around 
the X axis with angle φ, then by an angle θy around the 
new axis y1 and subsequently by an angle θz around the 
final shaft  z2.  

The   instantaneous  angular  speed ω, related  to  the 

coordinate system xyz, can be seen in (1).  

               (1) 
Where: i, j1 and k2 are the unit vectors along the axis x, y1 

and z2. 
Transforming (1) for the XYZ coordinate system and 

assuming small angles to θy and θz will yield:  
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                       (2) 

Adopting p, shown in Fig. 1, as any point in the 
undeformed position of the beam and defining the vector 
rp with respect to global coordinate system XYZ, will yield: 

                                     (3) 

Where u is the deformation vector at point p. Using finite 
element analysis, u can be written: 

                                      (4) 
Where  is the function form matrix for the 3D beam 
element and the vector contains the nodal 
displacements of the element, according to (5). 

          (5) 

The deformations due to the translation effect of the 
elements in terms of functions of form are: 

   (6) 

The rotation of the elastic element can be 
approximated by: 

           (7) 

Torsional deformation is given by (8): 
            (8) 

The derivative with respect to time of (3) can be 
expressed as:  

                        (9) 

Where the matrix  is anti-symmetric (3 x 3) 
associated with the rotational vector ω. 

                       (10) 

Since the magnitude of R and r0 do not vary with the 
deformation of the element, will yield: 

                         (11) 

Substituting (11) in (9): 

    (12) 

 
 
Kinetic energy 
 
The expression for the kinetic energy of the element can 
be written as:  

    (13) 

Where µ is the mass specific of the element. Substituting 
(12) in (13): 

    (14) 

The second and third terms of (14) are equally zero, 
because the moment of inertia is calculated with respect 
to the center of mass of the element. The first term 
represents the kinetic energy due to the translation effect 
and the last term the kinetic energy due  to  the  rotational  

 
 
 
 
effect, already including the gyroscopic effects. After 
algebraic manipulations, one gets at the expression of 
kinetic energy, as shown in (15). 

 

                                                 (15) 
Where: 

     (16) 

     (17) 

    (18) 

   (19) 

                           (20) 

                         (21) 

                                       (22) 

Where: 
IP  polar mass moment of inertia and  the diametral 
mass moment of inertia, according to (23) and (24). 

                  (23) 

                  (24) 
Thus (15) can be written in a compact matrix form as 

seen in (25). 

      (25) 

               (26) 

 is the augmented mass matrix of the 3D beam 
element; where  is the coupled torsional-transverse 
mass matrix, which will be ignored in this paper, since it 
is dependent on time;  is the translation mass matrix; 

 is the rotary inertia mass matrix e  is the 

torsional mass matrix. 
 
 
Strain energy 
 
Adopting for the 3D beam element the variables (u, v, w) 
as deformation of translation, one axial and two bending, 
and the variables (θy , θz , φ) composed of two 
deformation, one related to bending  and another with 
torsion,  the equation of the elastic strain energy for 
combined axial deformation, bending and torsion can be 
written as (27). 

      (27) 

The result considering the strain energy due to the 
gravitational effect is: 

            (28) 

Where  is the gravitational force given by (29). 

                     (29) 

Adding portions of strain energy and considering             
the symmetrical cross section,  that is,  ,  will  



 
 
 
 
yield: 

      

(30) 
Writing (30) in matrix form will yield: 

             (31) 

            (32) 

K is the augmented stiffness matrix of the 3D beam 
element; where  is the axial stiffness matrix,  is 

the elastic stiffness matrix,  is the torsional stiffness 

matrix and  is the axial stiffening matrix due to 

gravitational effect (pipe under tension). 
 
 
Equation of motion 
 
The expression for the movement of the mechanical 
system is derived by Lagrange equation (33). 

              (33) 

Where: 
  Lagrangian function 

     Generalized coordinates 
     Vector of generalized forces 
     Total kinetic energy 
    Total strain energy 
Substituting q and L in (33) it is obtained the finite 

element formulation for the dynamics of movement given 
by (34).  

   (34) 
Where: 

      Augmented mass matrix 
      Gyroscopic matrix 
       Augmented stiffness matrix 

      Angular velocity 
 
 
Complex modal analysis 
 
Adopting p(t) as the complex vector that relates the real 
coordinates y(t) and z(t) results in:  

     (35) 
Expanding y(t) e z(t) in Fourier series will yield: 

  (36) 

Equation (36) shows that the movement of a point in 
the plane can be considered as the superposition of 
several harmonic motions with different frequencies. 
Analyzing a specific node of the rotor, at a given natural 
frequency, it can be seen that the modal form can be 
expressed by:  

     (37) 
This way, it is possible to see that the two-dimensional 

movement from one point of the rotor can be interpreted 
as a composition of two sub-modes: The first, spinning in 
the same direction of rotation of the rotor (forward whirl) 
and   the   second,  rotating   in   the  opposite   direction  
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(backward whirl). 

Applying the complex transformation through the 
matrix  to the equation of motion seen in (34) results 
in:  

   (38) 

Where: 
    (39) 

    (40) 
    (41) 

Equation (38) can be placed in the form of state space 
equation, as seen in (42).  

   (42) 
Where: 

    (43) 

    (44) 

     (45) 

     (46) 

Assuming external forces and harmonic 
displacements will yield (47) through (42).  

    (47) 
Where:   

      (48) 

      (49) 

                 (50) 

From (47), the forced response can be given by:  
     (51) 

In the case of free vibrations: 
      (52) 

The non-symmetry of the involved matrices leads to 
two eigen value problems: 

     (53) 
     (54) 

Right and left eigen vectors are:  

                  (55) 

                             (56) 

Where  and  are the eigen vectors on the right 
and left of the eigen value problem of second order, seen 
in (38). The inverse of the dynamic stiffness matrix can 
be expanded in terms of eigen vectors on the right and 
left, according to (57).  
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Table 1. Mechanical property of rotor to simulation. 
 

Rigid Disk 

Mass (Kg) 2.46 

Radius (m) 0.05 

Thickness (m) 0.04 

Diametral Mass Moment of Inertia (Kg.m
2
) 1.87x10

-3
 

Polar Mass Moment of Inertia (Kg.m
2
) 3.08x10

-3
 

Circular shaft 

Diameter (m) 8.0x10
-3

 

Length (m) 0.62 

Second Moment of Inertia (Kg.m4) 0.2x10
-9

 

Young Modulus (N/m
2
) 2.1x10

11
 

Density (Kg/m
3
) 7850 

 
 

 
 

Figure 3. Rotation angles. 

 
 
 

    (57) 

Considering only the displacements, the frequency 
response for the forced system is obtained by: 

              (58) 

 
 
Numerical Simulations 
 
A computational routine was implemented using the 
MATLAB software. Two examples were made, one being 
a simple rotating shaft and the other a drill string. In the 

first instance it appeared to validate the system by 
comparing with literature. The second instance shows the 
possibility of using in drill strings, used in the construction 
of oil wells. Both examples were performed with the 
presentation of charts, tables and forward and backward 
modes, through complex modal analysis. 
 
 
Example 1 – Simple rotating shaft 
 
The Table 1 shows the input data for simulation of the 
vertical rotor. 

The  test  model,  shown  in Figure 3,  consists  of  an  
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Figure 4.  Schematic rotary system 
model to simulation. 

 
 

Table 2. Critical speed and vibration modes. 
 

 
 
 
 
 
 
 
 
elastic shaft fixed in one end and free at the other, while 
the disk is jointly attached to the shaft at the bottom.  

The solution of the problem by the presented modeling 
leads to two important results for the mechanical system, 
the eigen values and eigen vectors. Considering the sub-
damped system, the eigen values come in complex 
numbers, where the imaginary part indicates the natural 
frequency and real part of the damping factor. The eigen 
vectors bring about their own modes of vibration.  

The rotating systems experience situations of risk 
when operating at certain speeds of rotation called critical 
speeds. The speed is considered critical when it equals 
any of the natural frequencies of the system, which in, 
depends on the speed of rotation. To find the critical 
speeds, one traces the natural frequencies obtained by 
the simulator with the speed of rotation of the disk, in this 
same graph, the line is drawn . The critical speeds 
are determined where the points  intersect the 
curve of natural frequencies. The diagram represented in 
Figure 4 displays the results obtained with the model 
presented in this study.  

For a non rotating system (Ω = 0), the modes of 
vibration are composed of a bending and a rotation one. 

When the system turns, these two modes still exist, but 
each of them is separated into two, one forward and one 
backward. Figure 4 shows the variation of four natural 
frequencies, , ,  and  with the speed of rotation 
Ω of the system, as the items of critical speed. The critical 
speeds  and  matches to the backward and 
forward whirl motion, respectively, in the first mode of 
vibration and critical speed  match to backward whirl 
motion in the second mode of vibration, as numerical 
data presented in Table 2. 

In Campbell diagram it can be seen that  does not 
exist, moreover,  and are in fact "false critical 
speeds".  Therefore, there will only be the critical speed 

 = 2.3 Hz of the first forward mode, Alamo (2003).  
The natural frequencies  and are practically on 

horizontal lines, it means, they vary very little with the 
rotation speed. This means that the gyroscopic effect is 
concentrated mainly in the second mode of vibration, 
while the first mode can be practically analyzed by a 
simplified model that does not include the deflections of 
the disk. The value of static natural frequency of the 
rotation system for the first mode, i.e. with zero rotation 
(Ω = 0) is 2.3 Hz and the second mode, the natural  static  

Critical Speed (Hz) Whirl Mode Mode 

ωc1 2.3 Backward First 
ωc2 2.3 Forward First 
ωc3 34.0 Backward Second 
ωc4 - Forward Second 
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Table 3. Complex Modal Analysis Results. 
 

Eigenvalues [rad/s] 

0 + 15.889 i 0 + 13.065 i 

Natural Frequencies (Hz) 

2.54 2.09 

Right vectors  { Pf1   Pf2   Pb1  Pb2  }
T
                                                                    

0.025454 3,50E-11 

0.057424 8,87E-11 

2,01E-13 0.027662 

4,35E-13 0.071127 

Whirl mode 

Forward Backward 

Orbit 

Circular Circular 

 
 

 
 

Figure 5. Campbell Diagram and critical speed. 

 
 
 
frequency is 50 Hz.  

The Table 3 shows the modal parameter obtained 
through the formulation of complex modal analysis for the 
rotor shown in Table 1 with constant rotation speed of 
400 rad/s. Unlikely from what happens when it is used 
real coordinates in modeling, where you need to post 
processing the modal vectors to identify the modes of 
precession, the complex formulation already provides this 
result very clearly. For it, simply compare the modulus of 
forward and backward components of the modal vectors. 
Moreover, one can obtain the shape of the orbit. In this 
case, as there is no damping and rotor is isotropic, there 
are null values for both backward and forward whirl 
components. 

The Figure 5 provides a comparison with the 
traditional and the complex modal analysis in rotor shown 
in Table 1 in the implementation of various rotational 
speeds. It can be seen the distinction between the peaks 
of forward and backward whirl as increasing the speed 
clearly in the curves of the directional frequency response 
function 
 
 
Example 2 – Drillstring 
 
The example of the rotor in the following study it is a 
drillstring, normally used in construction of oil wells.The 
Figure 6 shows the  drillstring  design  with  discretization.  
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Figure 6. Classical modal analysis (FRF) and Complex modal analysis (dFRF). 

 
 

Table 4. Input data for drillstring. 
 

E
le

m
e
n

t 

Node Coord 
X (m) 

Length 
(m) 

Internal 
Diameter 

(m) 

External 
Diameter 

(m) 

Drillstring element name 

1 1 0 9,98 0,1086 0,127 TOP DRIVE  / DP 5” 

2 1060,82 

2   1060,83 0,1086 0,127 DP 5" 

3 2121,65 

3   1060,83 0,1086 0,127 DP 5" 

4 3182,48 

4   26,76 0,0762 0,127 3 HWDP 5" 

5 3209,24 

5   84,61 0,0732 0,1715 9 DC 6.3/4" 

6 3293,85 

6   110,15 0,0762 0,127 12 HWDP 5" 

7 3404 

7   71,47 0,0762 0,2032 FS / STAB / KM / PBL / 5 DC 8" / DJAR / XO 

8 3475,47 

8   14,55 0,0488 0,2032 LWD 8" / MWD 8" 

9 3490,02 

9   9,98 0,0605 0,2446 RSS 9,63" / BIT 12.1/4” 

10 3500 

 
 
 
The Table 4 shows the input data for drillstring. 

The Figure 7 presents the results for the frequency 
response function to drill string through the formulation of  

complex modal analysis. The finite element discretization  
of 30 nodes distributed in 31 elements, being comp-            
osed of 354 degrees of freedom after applying boundary  
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Figure 7. Drillstring design with discretization. 

 
 
 
conditions. 

We plotted frequency response function through the 
classical  and in the same graph as plotted  frequency 
response  function  by complex modal  analysis 
method. One can  see  that  there is  a correlation            
between the  frequency peaks  in both  methods. The 
great advantage of the complex method is to allow the 
clear identification of forward and backward whirl modes. 
 
 
CONCLUSIONS  
 
A dynamic formulation of rotating systems by finite 
element method was developed and implemented in 
MATLAB considering gyroscopic and gravitational 
effects, i.e., shaft subjected to its own weight, to study 
vibrations in flexible vertical rotors. The results showed 
good precision with respect to analytical and numerical 
studies drawn from the cited references. The model is 
limited to axi-symmetric, homogeneous, isotropic and 
non-linear rotors with a vertical cylinder and with one 
fixed end and another free. The developed system allows 
performing more advanced studies with long and slender 
shafts, as it is the usual in drill string oil wells. In this 
case, more detailed analysis, including dynamic effects 
resulting from contact with the wall of the borehole and 
the damping effects due to hydrostatic forces inside and 

outside of the pipes can be coupled to the model, thus 
enabling studies considering forced vibrations with 
response analysis in the frequency domain by complex 
modal analysis, aiming to investigate the modes of 
forward and backward whirl, which are highly damaging 
to rotating systems.  
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