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Abstract 

 

Petroleum reservoirs are characterised by various feature which are indicative of the geologic processes that 
resulted in the formation of such rock bodies. These geologic processes are responsible for the major 
uncertainties surrounding oil and gas production. There is therefore the need to quantify these uncertainties to an 

acceptable level to allow for the certain risk evaluations on petroleum projects. The process of history matching 
involves creating of reservoir models which mimic the observed reservoir performance to some 
acceptable extent. This paper evaluates two numerical schemes by which the history matching process 
is optimised with the subsequent utilisation of the models obtained from this process to infer certain 
properties deemed to be representative of the reservoir future performance. Single objective and multi 
objective particle swarm optimisation algorithms are used in optimised history matching of the 
synthetic PUNQ-S3 reservoir with the results from the two schemes put forward to a Bayesian evaluator 
for forecasting. The results obtained suggest the multi objective particle optimisation scheme not only 
produces good quality history matches but it also converges faster. With regards to forecasting, the 
models obtained from both schemes did not reflect the observed well bottom hole pressures. However, 
the multi objective scheme provided better forecasts of the field total oil production relative to the 
single objective scheme with the truth case being reflected. Moreover, the uncertainty intervals created 
from the multi objective scheme are wider than those generated from the single objective scheme. 
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INTRODUCTION  
 
Hydrocarbon resources are contained in certain 
compartments in the earth’s crust which have been 
subject to varying degrees of geologic history. The 
depositional circumstances of such oil containing 
reservoirs result in these geologic structures been 
characterised by some degree of heterogeneity. For 
instance, the possibility of having uniform rock 
permeabilities across an entire reservoir is considered to 
be minimal with expectation of relatively high and low 
permeability streaks in such formations (Mohamed et al.,  
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2010). 
There is the need to have some sort of model to mimic 

the production of crude oil from these reservoirs. 
However, modelling of reservoir bodies is carried out with 
under varying degrees of uncertainty due to the 
geological processes which have resulted in their 
formation. The basic process of model generation 
involves an attempt to calibrate a reservoir model such 
that its expulsion of oil, gas and water is similar to that 
which has been observed. This process termed history 
matching is characterised by its non-unique nature. 
Various reservoir models may be constructed all of which 
represent an adequate match to observed production 
data. These models  however  are  characterised  by  the 



 

 
 
 
 
different combinations of reservoir parameters. 

Over time, uncertainty management practices have 
evolved resulting in the creating of various numerical 
means of quantifying the uncertainties relating to 
production from hydrocarbon reservoirs (Mohamed et al., 
2011). Various computational means now exist through 
which a set of history matched reservoir models may be 
generated and utilized in uncertainty quantification. The 
fundamental idea behind these processes is the 
development of various sampling numerical algorithms 
which enable some form of optimised search for the right 
set of reservoir parameters which satisfy a given 
objective to some extent. Generally, the objective function 
to be satisfied involves minimisation of the deviation 
between the history matched or simulated reservoir 
models and observed production data (Mohamed et al., 
2010). These history matched models are then 
subsequently used to infer future magnitudes of certain 
reservoir or well production parameters. Like the history 
match algorithms described above, various sampling 
techniques have been developed to handle this prediction 
process. 

The performance of two forms of the particle swarm 
optimisation algorithm in history matching a set of 
synthetic data is analysed in this paper. The single 
objective form of the algorithm performs history match 
runs with emphasis on trying to minimise an objective 
function. Multi objective particle swarm optimization on 
the other hand performs this same function but with the 
number of objective functions to be handled not limited to 
one thereby permitting simultaneous investigation of a 
wide range of scenarios.  

The results from these inverse problem estimations are 
then forwarded to a Bayesian evaluator where inference 
on the magnitude of well bottom hole pressures and 
comparison of the resulting Bayesian intervals from both 
schemes is made. 

It is clearly apparent that there is a huge economic 
incentive to the establishment of these numerical 
processes. Uncertainty quantification is generally a 
measure of the risk oil and gas majors carry with each 
investment. Thus, these history matching and prediction 
frameworks enable the construction of various economic 
models in order to determine the degrees of commercial 
viability which may accrue to a petroleum project. 
 
 
Particle Swarm Optimisation  
 
The various optimisation techniques utilized in history 
matching involve some sort of numerical algorithm which 
samples a predetermined sample space the limits of 
which are subject to certain geological and engineering 
considerations.  

The Particle Swarm Optimisation (PSO) was initially 
designed as a means of measuring the social behaviour 
of a group of birds but its application has been extended  
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to various fields including petroleum engineering 
(Hajizadeh et al., 2010). The basic thought process 
behind the algorithm is that birds belonging to a particular 
flock would generally tend to fly towards regions 
perceived to exhibit certain habitat characteristics at a 
particular point in time. Each member of the flock thus 
has a memory of its best historical location and the flock 
is often characterised by a global best position.  

The Particle Swarm Optimisation process involves 
initiating a swarm of particles which randomly search the 
sample space in an attempt to obtain a sufficient solution 
to a particular objective function which in this case is the 
misfit function defined in equation 1. 

 
Where j is the number of observations; P is the 

parameter around which the history match is being 
conducted (e.g. oil flow rate, well bottom hole pressure, 
water cut, well gas-oil ratio etc.); σ is the standard 
deviation of the observed parameter, P and is often 
estimated by the anticipated errors in the measuring 
devices used in determining the magnitude of such 
parameters. 

The Particle Swarm Optimisation algorithm like certain 
other numerical algorithms related to history matching 
may be applied to single objective and multi objective 
functions.  

A diagrammatic illustration of the Particle Swarm 
Optimisation algorithm from the work of Mohamed et al. 
(2010) is shown below in Figure 1. 

The overall aim of the search process is to determine 
that particle position within the search domain which 
minimises the objective function (i.e. the misfit equation) 
i.e. 

(Mohamed et al: History Matching with Particle Swarms 
(2010)). 

A particle’s updated position may be mathematically 
expressed thus: 

  

 
Where Xi depicts the particle position at different times 

while, Vi
k+1 

is the velocity component of the update 
equation.  

Also, 
  

 
 
 
Characteristics of the Particle Swarm Optimisation 
Algorithm  
 
The basic equation of the algorithm is represented in 
equation 4 above. The meaning of the terms involved and 
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Figure 1.Illustration of Particle Swarm Optimisation Algorithm (Mohamed et al: Application of Particle Swarms for 
History Matching in the Brugge Reservoir) 

 
 
 
their implications on the algorithm is summarised thus:  
� ω: This depicts the inertia (i.e. the ability of a 
particle to move within the search domain). Large values 
of inertia correspond to a wider range of particle 
exploration and therefore a larger search region whilst 
smaller inertia values imply a search in a relatively 
narrower neighbourhood. Various suggestions have been 
made as to the magnitude of the inertia resulting in the 
development of different inertia handling schemes 
(Mohamed et al: History Matching with Particle Swarms 
(2010)). A linear decreasing inertia function for instance 
would imply initial relatively large scale exploration 
culminating in a much narrower search space whilst a 
linear increasing inertia function finally results in a larger 
particle exploration.  
� C1: This term referred to as the cognitive 
component of the algorithm illustrates some form of 
particle interaction. It depicts the probability of a particle 
moving towards its perceived region of best fit according 
to its retained memory. C1 ε (1,2) (Mohamed et al. 
(2010))  
� C2: This term referred to as the social component 
of the algorithm also illustrates some form of particle 
interaction. It depicts the probability of a particle moving 
towards the perceived region of best fit attained by a 
member of the particle swarm. C2 ε (1,2)   (Mohamed et 
al. (2010))  
� rand1 and rand2: These terms are introduced to 
account for uncertainty with regards to the 
implementation of the  algorithm. rand1 and rand2 ε  (0,1). 
 

Boundaries 
 
There is a tendency for a particle within the swarm to exit 
the desired search domain. Various techniques have 
however been developed to ensure such particles are 
repositioned within the search domain. Some of these 
include the respawn strategy, absorbing strategy, 
reflecting strategy and the damping strategy.  

Mohamed et al. (2010) investigated the sensitivity of 
the particle swarm optimisation algorithm to the bouncing 
strategy with a linear decreasing inertia and with a 
constant inertia of 0.6. They observed an earlier 
convergence for the case with the constant inertia (0.6) 
most probably due to the relatively lower local 
exploitation associated with the constant inertia. 

The basic single objective particle stream optimisation 
workflow may be summarised thus: (Mohamed et al: 
History Matching with Particle Swarms (2010)) 
� Initialise the particle swarm (i.e. distribute 
specified number of particles randomly in sample space)  
� Evaluate the objective function for each particle 
in the swarm (i.e. equation 1)  
� Compare each particle’s fitness value with that 
corresponding to pbest. Replace pbest with the current 
position if the current value of the fitness function is less 
than that corresponding to pbest (i.e. equation 2)  
� Update the global best position and fitness value 
of the swarm  
Update the velocities and positions of each particle using 
equations 3 and 4  
 



 

 
 
 
 
� The above processes are then repeated till some 
stopping criterion is reached. Stopping criterions may 
include number of iterations, specified misfit value or 
certain gradient value computations.  
 
 
Multi Objective Particle Swarm Optimisation 
 
The basic concepts which apply to single objective 
particle swarm optimisation schemes also apply to the 
multi objective scheme. However, there is an additional 
concept of dominance due to the need for some sort of 
compromise between various objectives. Dominance in 
this context refers to a set or sets of solutions to a multi 
objective problem which optimises the solution to one of 
such functions without having an adverse effect on the 
other. Mathematically, a solution X1 is dominant over 
another X2 if  

(Mohamed et al. (2011) 
Where fi (X) denotes the objective functions (misfit) to 

be minimised and k is the number of such functions or if 
X1 is strictly better than X2 in at least one of the objective 
functions. (Mohamed et al. (2011). 

Multi objective particle swarm optimisation estimates 
may be made on different number of objective functions. 
For instance one of such functions may be the well 
bottom hole pressure of a producer whilst the other may 
be the producer’s Gas-Oil Ratio (GOR). In terms of the 
initially defined objective function (equation 1), we may 
write: 

 
Various attempts have been made to extend single 

objective particle swarm optimisation algorithms to multi 
objective schemes, however, these processes all vary 
based on the presumed definition of optimality. Three 
main techniques may be summarised thus: (Mohamed et 
al: History Matching and Uncertainty Quantification: 
Multiobjective Particle Swarm Optimisation Approach 
(2011)). 
� Aggregation based methods in which the various 
objective functions are summed up and the optimisation 
process is carried out in form of these lumped sums.  
� Criterion based methods in which different 
phases of the optimisation scheme operate on a different 
objective.  
� Pareto dominance based methods which require 
the determination of a group of non-dominated solutions 
which are not dominated by any other feasible solutions. 
This method is characterised by a Pareto front, along 
which these non-dominated solutions are evident. The 
basic aims of this scheme are to obtain a diverse  set  of 
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Non-dominated solutions, decrease the distance between 
the Pareto front if it exists and the solutions and 
maximise the number of solutions along the Pareto front 
(i.e. the Pareto Optimal Set). (Hajizadeh et al: Towards 
Multi objective History Matching: Faster Convergence 
and Uncertainty Quantification (2011). As stated earlier, 
various extensions of the original particle swarm 
optimisation have been made to account for multi 
objective cases. The crowding distance mechanism is 
discussed here.  
 
 
Crowding Distance Technique  
 
The crowding distance technique involves determination 
of a diverse set of optimal solutions with a good measure 
of distance between such solutions across the Pareto 
front if it exists. Selection of the swarm leader is therefore 
not random as in the single particle swarm optimisation 
algorithm but rather, the leader is selected based on the 
estimated crowding distance between the various 
members of the swarm.  

Mathematically, the same update equation governs the 
particle position update (equation 3) however there is a 
change in the velocity update as shown below. 
(Mohamed et al. (2011)) 

 
 

Crowding distance is defined as the size of the largest 
cuboid around a particle with the exclusion of any other 
particles in the swarm. (Mohamed et al. History Matching 
and Uncertainty Quantification: Multiobjective Particle 
Swarm Optimisation Approach (2011)). 

The global swarm leader is then selected based on a 
descending order (the top 10%) of the crowding 
distances associated with the particles from an external 
archive. Another characteristic of the crowding distance 
algorithm is the addition of a mutation factor to account 
for the possible premature convergence of the iterations 
due to the particle being trapped in local optimum points. 
Mutation factors are often applied to the entire swarm at 
the commencement of the algorithm. 

The general multi objective particle swarm optimisation 
workflow may be summarised as follows (Mohamed et al: 
History Matching and Uncertainty Quantification: 
Multiobjective Particle Swarm Optimisation Approach 
(2011): 
� Initialise the particle swarm  
� Estimate crowding distance of particles in 
external archive and determine leader  
� Repeat  
o For each particle  
� Select leader  
� Update velocity and position  
� Consider mutation effect  
� Evaluate misfit  
� Update particle’s best position, pbest  
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Figure 2.PUNQ Model Saturation Distribution 

 
 
 
o Update leaders in external archive  
o Perform random replacement when archive is full  
o Evaluate leader and move on to next iteration till 
a stopping criterion is reached.  
 
 
Forecasting 
 
The history matching process as earlier discussed is not 
unique in terms of the solutions that emerge from it. It is 
possible to obtain probabilistic estimates of the 
reservoir’s future performance based on these history 
matched models. Groups of such reservoir models may 
be termed an ensemble. The Bayesian framework for 
extrapolating reservoir performance is discussed briefly 
here. This method involves the determination of a 
posterior probability distribution (PPD). The Bayesian 
credible intervals are evaluated by integration over this 
multi-dimensional model space. The direct Monte Carlo 
methods commonly applied in this method are not 
applicable where the data to be handled has no defined 
distribution. Hence, some form of modification is required 
to handle these irregular distributed data models. The 
history matched reservoir models are a typical example 
of this scenario. According to Sambridge (1999), two 
major problems arise in the determination of the PPD. 
These are the constraint provided by the observed data 
in that the history matching process in not unique and the 
distribution of the sampled data (reservoir models) is 
uncertain. Thus, it is generally accepted that the 
ensemble will always be inadequate. 

The probability distribution density function (PPD) 
within a multidimensional model space, m, may be 
defined thus: (Sambridge M: Geophysical inversion with a 
neighbourhood algorithm (1999)). 
 

 
Where k is a normalising constant, ρ (m) is the prior 

probability and L (m)|do is the likelihood function. The 
likelihood function is a mathematical expression of the 
degree of fit between modelled and observed data and is 
given by the negative exponent of equation 1. 
 
 
PUNQ-S3 Reservoir 
 
The PUNQ-S3 is a synthetic reservoir model developed 
for various petroleum engineering studies. In this study, 
the geologic uncertainty in the model is examined via the 
already discussed numerical means and the accuracy of 
these discussed algorithms in uncertainty quantification is 
determined. It consists of five layers further subdivided 
into nine homogeneous units. The reservoir top is at 
2430m at a dip angle of about 1.5

o
. There is the presence 

of a small gas cap in the structure which is bounded by a 
fault to the east and is underlain by a strong aquifer 
implying a good degree of pressure support (Hajizadeh et 
al. (2010)). The various production wells are as indicated 
on the structure (Figure 2). 

The characteristics of the model are summarised thus:  
Grid type: 3-D (19 x 28 x 5); only 1761 cells are active.  
Grid dimensions: X = Y = 180meters. 

Permeability across the reservoir is extrapolated with 
respect to porosity via the following mathematical 
expressions (Hajizadeh et al. (2010). 

 

 

  
The porosity and permeability ranges utilized in the 
algorithm sampling process are given below in Table 1. 
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Table 1.Parameterization of PUNQ Reservoir Model (Hajizadeh et al. (2010) 
 

Porosity Horizontal Permeability Vertical Permeability Distribution Employed 

0.15 - 0.3 133 - 3013 44 - 925 UNIFORM 

0.05 - 0.15 16 - 133 8 - 44 UNIFORM 

0.15 - 0.3 133 - 3013 44 - 925 UNIFORM 

0.1 - 0.2 47 - 376 17 -118 UNIFORM 

0.15 - 0.3 133 - 3013 44 - 925 UNIFORM 

 
 
 
METHODOLOGY  
 
The analytical method utilized in this work includes 
performance of the history matching process using both 
the SOPSO and MOPSO. This was implemented on the 
Raven software interface which has been created for 
optimised history matching and uncertainty quantification.  

Sensitivities were carried out initially on the basic PSO 
algorithm to characterise its convergence capabilities. 
Four alterations to the algorithm were investigated and 
their convergence rates determined. However, it is 
important to note that these sensitivities are carried out 
without considering the initialisation point of the algorithm 
in each run. Hence, general conclusions cannot be made 
here as to the obtained results.  

The SOPSO algorithm was applied to the synthetic 
PUNQ field. All the desired objective functions (quantities 
to be history matched) were the input to the process. 

For the MOPSO algorithm, only a double objective 
approach was considered. Two main scenarios were 
investigated in this work. Firstly the bottom hole 
pressures were grouped as one objective with the gas oil 
ratios across the wells serving as the second objective.  

In the second scenario investigated, the wells were 
grouped into two separate groups with all the objective 
functions corresponding to wells from each group serving 
as the two objectives.  

A 75%-25% split is used on the observed data to allow 
comparison of the forecasting capabilities. The results of 
the history match process are then forwarded to the 
Bayesian Neighbourhood Algorithm (NAB) for 
forecasting. 
 
 
RESULTS AND DISCUSSION  

 
The performance of the basic particle swarm optimisation 
algorithm was examined by carrying out sensitivity on the 
mathematical equation governing the algorithm (equation 
4). The algorithm characteristics utilized in these 
sensitivity estimations is presented in table 2.  

As observed in Figure 3 the average misfit per iteration 
does not follow a general reducing pattern with increasing 
number of iterations in three of the cases. This 
occurrence is due to the random nature of the algorithm 
initialisation probably suggesting the parameters utilized 

in the standard 1 case are some type of optimum. Also, 
for runs of 2000 iterations performed on the four 
investigated set of parameters, it is observed from figure 
4 that the lowest misfit within generation sets follows a 
general reducing trend with the flexible parameters case 
becoming a little better after 2000 iterations than the 
standard 1 set of parameters. It is important to note that 
due to the random nature of the swarm leader selection, 
the lowest misfits in each generation are a function of the 
location of the swarm leader within the search domain. 
Hence, the average misfit per iteration shown in Figure 3 
may be a more realistic way of analysing these 
scenarios. Moreover, Figure 4 shows the same pattern as 
Figure 3 suggesting the parameters in the standard 1 
version of the algorithm are somewhat more stable than 
the others. Comparative analysis of the two particle 
swarm optimisation schemes was also carried out. The 
multi objective version of the particle swarm optimisation 
algorithm was also examined using the standard 1 set of 
parameters as indicated in table 2. 

The resulting best history match models across the 
wells for both the SOPSO and MOPSO schemes is 
illustrated in Figure 5 with table 3 showing the 
comparison of both schemes. Convergence rates of both 
algorithms were made as observed in Figures 6 and 7. 
Due to the differences in the initialisation of both 
algorithms the relative convergence rate of the two PSO 
schemes was assessed by comparing the average misfit 
over 3 runs each comprising of 1000 iterations. Also, the 
minimum objective function after 10, 50 100, 200, 500 
and 1000 iterations for each of the runs was averaged 
and used in this comparative analysis. The results 
suggest that the MOPSO algorithm converges faster than 
the SOPSO algorithm. The results obtained here may not 
be generalized due to the following reasons. 
� They are specific to the PUNQ-S3 reservoir  
� The initial starting point of both the SOPSO and 
MOPSO algorithms most likely do not coincide hence a 
fair assessment may not be made here.  

Also, figure 8 illustrates the total objective misfits for the 
PSO scheme (wells grouped). These plots suggest the 
SOPSO scheme obtains relatively better history matches. 

Also, a set of non-dominated solutions has been 
identified by combination of the misfits obtained for the 
MOPSO scheme (wells grouped). This is shown in Figure 
9. The Pareto front is approximated to define the left and 
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Table 2.Characteristics of various PSO strategies investigated 
 

 No of particles C1 C2 Ω 

STANDARD1 20 1.494 1.494 0.729 

STANDARD2 20 1.7 1.7 0.6 

FLEXIBLE 20 1.333 1.333 0.9 

CUSTOMISED 20 2 2 0.4 

 
 

 

 
 

 
Figure 3.Average misfit for different generation sets for various PSO strategies 

 
 

 

 
 

 
Figure 4.Lowest misfit for different generation sets for various PSO strategies 

 
 
 
bottom envelope of the plots. 

The complete set of 1000 history matched models was 
submitted to the Bayesian evaluator for determination  of 

the Bayesian credible intervals. The exact extent of the 
sampling process resulting in the generation of the 
intervals is uncertain.  
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Figure 5.Best History Match models (MOPSO Scheme - Wells grouped) 

 
 

Table 3.Comparison of both SOPSO and MOPSO schemes 
 

 No. of iterations Minimum objective function Generational minimum (last iteration) 

SOPSO 1000 0.54 0.75 

MOPSO (BHPS and GORS GROUPED) 1000 0.19 1.42 

MOPSO (WELLS GROUPED 3000 0.2 1.60 

 
 

 

 
 

Figure 6.Average Generational minimum misfit for different generation sets  
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Figure 7.Average lowest objective function within different generations 

 
 

  

 
 

Figure 8.Total Misfits against number of iterations for both PSO schemes 

 
 
 

In terms of total field oil recovery, the truth case 
cumulative oil production at 2571 days is used for 
comparison as shown in Figure 10. It is observed that the 
MOPSO scheme generally produces a wider interval 
range which is reasonable in terms of uncertainty 
quantification. 

CONCLUSION  
 
The following conclusions maybe reached considering 
the results obtained in this research work. 
� Both of the particle swarm optimisation schemes 
evaluated (SOPSO and MOPSO) are important tools for  
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Figure 9.Misfit Plot showing approximate Pareto front (Wells grouped) 

 
 

 

 
 

Figure 10.Bayesian credible intervals for both PSO schemes showing total oil production at 2571 days 

 
 
 
Uncertainty quantification 
� The MOPSO scheme allows multiple realisations 
of the reservoir performance to the evaluated as groups 
of objective functions. 
� The MOPSO scheme converges faster  than  the 
SOPSO scheme implying that fewer simulations maybe 
needed to obtain good quality history matches. However 

this observation is subject to further investigation on 
different reservoir models and the same algorithm 
initialisation point within the search domain. 
� The models obtained from the history match 
process may be used to infer certain quantities which 
would characterise future reservoir performance. The 
MOPSO scheme obtained  reasonably  wider  uncertainty 
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intervals with respect to the total oil production whilst  the 
SOPSO scheme was inadequate in providing a similar 
result.  
� In terms of economic worth, the value of both 
schemes cannot be over emphasized. The uncertainty 
ranges from the Bayesian evaluator may be incorporated 
into various financial models thereby enabling the 
commercial viability of petroleum projects to be 
determined. Thus, the associated risk in oil and gas 
projects may be quantified. 
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