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The metallurgical science has been used to develop new weldable high strength steel plates 
having strength and toughness of API-5L, X-120M for manufacturing line pipes for transportation 
of petroleum products. A pan cake type microstructure design has been used to ensure the 
strength level of X-120M and ductile fracture behavior at temperature down to -20 ºC. Ultra 
refined, lean micro-alloyed chemistry design and plate rolling through TMCP (thermomechanical 
control processing) in combination with AC (accelerated cooling) steel has been produced of 
lower transformation microstructure in the steel plates. The steel chemistry and TMCP and AC 
plate rolling designed in such a way that the plate should be of lower bainite and lower 
martensite to achieve the strength level of X-120M line pipe. The provision was made in the 
chemistry so to have minimum effect of welding heat input on the base metal or so called heat 
affected zone (HAZ) in the submerged arc welding of long seam weld of line pipe. 
 
Keywords: TMCP, AC, HAZ, pan cake Microstructure, line pipe, API-5L, HSLA, lower transformation 
product. 

 
 
INTRODUCTION 
 
In view of the ever increasing length of pipe line 
networks and ever increasing operating pressure, it is 
very essential to develop high strength steel for 
manufacturing line pipes. The governing parameters of 
any pipe line project are project cost, operating cost and 
operating life. The variables affecting the project cost 
are mainly the tonnage of steel and the welding 
consumables used in any pipe line project. The 
development of high strength low alloy steel has a 
significant contribution to pipe line project cost 
reduction. Recent experiments Corbett et al (2003) 
show that X-100M steel could give investment cost 
savings of about 7% with respect to X-80M and by 
using X-100M instead of X-70M, the cost saving could 
be higher. When we use X-120M steel the cost saving 
may be much higher over X-70M material. In other 
words the clean fuel may be delivered at lower price to 
the end users in today’s competitive market. 

High-strength low alloy steel (Bhadeshia, 1989) was 
sometimes called acicular ferrite (AF) high strength low 
alloy (HSLA) steels. This is because they exhibited a 
microstructure of heavily dislocated laths, this 
microstructure is more like the low carbon bainite in 
which adjacent laths are in the same crystallographic  
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orientation in space and it is probably not useful to call it 
an acicular ferrite (AF) microstructure. The 
microstructure and dislocation densities are playing a 
major role in the development of high strength pipeline 
steel (Hillenbrand et al., 2001; Graf et al., 1995). The 
bainite microstructure (Nakasugi et al., 1980; 
Bhadeshia, 1999) with ultralow carbon and carbon 
equivalent can meet the requirement of strength and 
toughness at low temperature. The strength of bainite is 
increased due to the carbide precipitation in the bainite 
and the defect introduced by plastic deformation on the 
kinetics. The (Koo et al., 2003)

 
lower bainite and dual 

phase microstructure were shown to offer superior 
combination of strength and toughness in the steel 
plates and thus these are attractive for X-120M line pipe 
manufacturing. The control of raw materials and clean 
steel  making practice and limited 'O' and 'S' contents 
up to 20 ppm while TMCP conditions produced domain 
of less than 2 µm. It was determined that ‘B’ addition of 
5-15 ppm enables the use of very low ‘C’ lean chemistry 
design. The ‘B’ addition, lean chemistry provides 
sufficient hardenability, thus flexibility during plate 
processing and seam welding. The (Schwinn et al., 
2004; Fabian et al., 2005) ‘B’ steel with 17ppm of ‘B’ 
along with alloying elements ‘Cr’, ‘Ni’, ‘Mo’ etc. and 
microalloying elements can achieve the strength and 
toughness level with, TMCP (thermomechanical control 
processing) process. Also (Heckmann et al., 2004) ‘B’  
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Table 1. Weight Percentage of Elements of X-120M Steel Plates 
 

Element C Si Mn P S Cr Ni Mo Al Cu 

Wt. (%) 0.06
5 

0.290 1.950 0.012 0.005 0.170 0.040 0.130 0.042 0.021 

Element Ti V Nb Ca N B Al/N Nb+V+Ti Pcm CE 

Wt. (%) 0.01
2 

0.001 0.042 0.001 0.002 0.004 21 0.055 0.211 0.454 

 
 
containing steel has an advantage of having the wider 
window for rolling and cooling condition. The widening 
the operating window for rolling and cooling due to 
shifting the gamma-alpha (γ-α) transition curve by the 
addition of ‘B’ allows the formation of bainite 
microstructures even at low cooling rates. The effect of 
micro alloying elements (Hillenbrand and Kalwa, 2002)  
and effect of ‘B’ on the properties of line pipes will be 
enhanced if the addition of ‘B’ made in control way. The 
new (Funakawa et al., 2004; Siwecki et al., 1999) hot 
rolled high strength steel consisting of ferrite matrix and 
nanometer sized carbides achieved the strength level of 
800 MPa (X-100M). By this route, by adding more ‘Ti’ 
as equal as ‘Mo’ we can achieve the high strength level 
of X-120M pipeline steel. By Schutz et al (2000); 
Schwinn et al (2002); Ouchi (2001) utilizing the new 
heavy accelerated cooling (HACC) technique the cost 
of the alloy for X-120M steel can further be reduced by 
using X-100M steel composition. This will further help to 
maintain the good toughness level in the weld as well 
as in the HAZ of the seam weld. The mechanical 
properties (Manohar et al., 1996; Manohar and 
Chandra, 1998; Hara et al., 2004) of the TMCP steel by 
combined addition of ‘Nb’ and ‘B’ or that of ‘Mo’ and ‘B’ 
in low carbon steel has been studied by the authors. 
The strength remarkably increased due to the combined 
addition of ‘Nb’ and ‘B’ or that ‘Mo’ and ‘B’ because 
gamma/alpha (γ/α) transformations is retarded and 
bainite transformation promoted. This caused by the 
increase in the segregated ‘B’ along the gamma (γ) 
grain boundary before gamma to alpha (γ-α) 
transformation. Thermodynamics and metallographic 
analysis (Yang et al 1995) show that the transformation 
of acicular ferrite and bennite are apparently similar with 
displacive characteristics.  
 
 
MATERIALS AND EXPERIMENTAL METHODS 
 
Experimental TMCP and AC steel plate specification 
has been formulated for grade as per API-5L, X-120M 
and Chemistry of experimental plate shown in table 1 
respectively. The parameters Pcm and CEQ are 
calculated as per formulae in terms of weight percent 
are as per equation (1) and (2) respectively: 
Pcm = C + Ni / 60 + Si / 30 + (Mn + Cu + Cr) / 20 + 
Mo/15 + V / 10 + 5B             (1) 
CEQ = C + Mn/6 + (Cr+Mo+V)/5 + (Ni + Cu)/15.                                                    
(2) 

The scanning electron microscopy (SEM) and 
transmission electron microscopy (TEM) has been 
performed on the experimental TMCP and AC steel. 
 
 
Scanning Electron Microscopy (SEM) 
 
The scanning electron microscopy on the plates has 
been performed on the samples drawn from the TMCP 
steel plate by using two percent nital solution as an 
etchant. 
 
 
Transmission Electron Microscopy (TEM) 
 
Transmission electron microscopy was carried out on 
thin foils prepared by cutting thin wafers from the steel 
samples of TMCP steel plate, and grinding to ~ 100 µm 
in thickness. Three millimeter discs were punched from 
the wafers and electropolished using a solution of ten 
percent perchloric acid in acetic acid electrolyte. Foils 
were examined by HITACHI 7600 TEM operated at 120 
kV.  
 
 
RESULTS 
 
The results obtained from scanning electron microscopy 
and transmission electron microscopy are shown in 
figure 1 to 11 below. The two electron microscopy 
techniques are used to establish the microstructures 
obtained.  
 
 
DISCUSSION 
 
The electron microscopy was carried out on 
experimental TMCP and AC cooled steel plates. The 
micrograph obtained are shown in this paper with SEM 
in figure 1, shows  pan cake type microstructure which 
confirms the predominant bainitic phase along with the 
second phase (Nakasugi et al., 1980; Matsumoto et al., 
1986) or predominantly acicular structure (laths) and 
the pan-cakes (Koo et al.,2003) along the rolling 
direction. The white dotes within the laths are fine 
cementite are the characteristic of lower bainite. The 
SEM micrographs are having ultrafine lath like bainitic 
structure (Schwinn et al., 1984; Heckmann et al., 2004) 
and small island of coalesced bainite predominantly the
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Figure 1a. SEM Micrograph of lath type and pancake along the rolling 
direction, typically bainitic structure at 1/4

th
 thickness of base plate. 

 
 

                                     
 

Figure 1b. SEM Micrograph of lath type and pancake along the rolling direction, 
typically bainitic structure at mid thickness of base plate. 

 
 

 
 

Figure 2. Bright field TEM micrographs showing lath-type and 
bainitic-type ferrite with high dislocation density. Interlath 
carbides are indicated with arrows. 
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Figure 3. Bright field TEM micrographs showing lath-type and 
bainitic-type ferrite with high dislocation density. Interlath carbides 
are indicated with arrows. 

 
 

    
 

Figure 4. Bright field TEM micrograph showing coarse precipitates in ferrite matrix together with EDS 
analysis for precipitates identified as “a-c”. 

 
 

   
 

Figure 5. Bright field TEM micrograph showing coarse precipitates in ferrite matrix together with EDS analysis for 
precipitate shown. 
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Figure 6. (a) and (b) Bright field TEM micrographs showing fine 
precipitates in ferrite matrix.(c) SAD pattern for the fine MC type 
carbides, where M = Nb or Ti. 

 
 

 
 

Figure 7. (a) Bright field TEM micrographs showing fine precipitates in ferrite 
matrix and grain boundaries. 

 
 
martensite inside the island. These micrographs are 
typically bainitic microstructure (Asahi et al., 2003) of 
lower bainite with fine pancake like grains and 
dominated by lower bainite. The SEM micrographs are 
having a typical microstructure of TMCP (Hitoshi et al., 
2004) steel with boron and low carbon lean chemistry of 
lower bainite which is capable to produce high strength 
and toughness values. 

The transmission electron microscopy (TEM) 
micrograph shows the microstructure in TMCP and AC 
plate material is of predominantly lath type ferrite, lath 
type bainitic ferrite and non-polygonal ferrite along with 
martensite with high dislocation density  as shown in 
figures -02, 03 (snaps taken at two different spots) 08 
and 09. The coarse metallic carbide inclusions are of 
cubic structure are found in the microstructure shown in  
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Figure 8. Bright field TEM micrographs showing non-polygonal 
ferrite and bainitic-type ferrite with high dislocation density. 

 
 

 
 

Figure 9. Bright field TEM micrographs showing lath-type and 
bainitic-type ferrite with high dislocation density. 

 
 

   
 

Figure 10. Bright field TEM micrograph showing coarse precipitates in ferrite matrix together with EDS analysis for 
precipitates identified as “a-c”. 
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Figure 11. (a) Bright field TEM micrograph showing fine precipitates in ferrite matrix. 
(b) SAD pattern for the fine precipitates. 

 
 
figures – 04 to 07 and 10 to 11. The results of test are 
shown in the figures 02 to 07 are base plate ¼th 
thickness from the surface approximately and figures 08 
to 11 are base plate near mid thickness approximately. 

The microstructure near plate surface is lath type, 
bainitic ferrite with high dislocation density and Interlath 
carbide as shown in figure 02 and 03. The precipitates 
in the ferrite matrix and along the grain boundaries are 
the metallic carbides are of cubic structure and these 
carbide are of Nb and Ti as shown in figures 04 to 07. 
The microstructure at mid thickness of the plate having 
lath type, bainitic type ferrite and non-polygonal ferrite 
with high dislocation density as shown in figure 08 and 
09. The appearance of non-polygonal ferrite is due to 
the cooling rate difference during accelerated cooling as 
compared to the surface. The ferrite matrix having 
coarse precipitates as found in near surface of the plate 
microstructure. 

The structures found in the scanning electron 
microscopy and transmission electron microscopy are  
predominantly the lower bainite and martensite with 
cubic precipitates of ‘Nb’ and ‘Ti’ carbides in the ferrite 
matrix. It is very difficult to obtain the high toughness at 
sub zero temperature at this strength level (minimum 
yield strength of 120 ksi) without having microstructure 
of lower bainite and martensite through TMCP and AC 
route. This is a well known fact that as the strength level 
increases the toughness starts decreasing. (Bhadeshia, 
1989; Bhadeshia et al., 1980; Koo et al 2003) the 
microstructure obtained in the experimental steel can 
achieve the required strength and toughness at sub 
zero temperature. 
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CONCLUSION  
 
Present Experimental TMCP and AC steel plate of API-
5L, X-120M with Pcm of 0.211 and lower bainite and 
martensite with precipitates of Nb and Ti carbides 
having the capacity of producing good toughness 
values of X-120M pipeline steel below sub zero 
temperature. The development of high strength low 
alloy steel has a significant contribution to pipe line 
project cost reduction. Recent experiments (Corbett et 
al., 2003) show that X-100M steel could give investment 
cost savings of about 7% with respect to X-80M and by 
using X-100M. When we use X-120M steel the cost 
saving may be much higher over X-70M material. In 
other words the clean fuel may be delivered at lower 
price to the end users in today’s competitive market 
because of lower cost of a pipeline construction. In 
other words lower transportation cost.  
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