Antibacterial studies of fish mucus from two marketed air-breathing fishes – *Channa striatus* and *Heteropeustes fossilis*

*Centre for Aquaculture Research and Extension, St.Xavier’s College, Palayamkottai, Tamil Nadu (India) Post Graduate Department of Microbiology, Sri Paramakalyani College, Alwarkurichi, Tamilnadu (India).

*Corresponding authors e-mail: drsvmicro@gmail.com

Abstract

The purpose behind the current investigation was to understand the role of antibacterial activity of mucus in marketed air breathing fishes *viz*: against the selected human and fish pathogenic bacteria. In the current study, efforts have been made to screen the antimicrobial efficacy of the mucus harvested from two marketed air-breathing fishes namely *Channa striatus* and *Heteropeustes fossilis*. The antimicrobial effect of mucus was tested at 30ul concentration by well diffusion method against ten bacteria such as *Bacillus subtilis*, *Micrococcus luteus*, *Staphylococcus aureus*, *Streptococcus pyogens* (Gram Positive), *Escherichia coli*, *Proteus vulgaris*, *Pseudomonas aeruginosa*, *Salmonella typhimurium* and *Vibrio cholera* (Gram Negative) and *Mycobacterium smegmatis* (Acid-fast bacilli). The activity was measured in terms of zone of the inhibition in mm. Ciprofloxacin was used as a positive control. The antibacterial effect was noted in the mucus collected from both the fishes. Even though the effect of mucus was found to be lesser when compared to the antibiotic – ciprofloxacin, considerable effect against all the bacteria was noted irrespective of their type and species. Higher antibacterial zones were noted against Gram positive bacteria than Gram negative and acid fast bacilli. Maximum zonation was noted against *Staphylococcus sp* and *Streptococcus sp* (12 mm) with *C.striatus* mucus. Except *M.smegmatis*, the effect of mucus from *C.striatus* for presented a better activity than that of *H.fossilis*. The findings of the current investigation candidly revealed that the mucus of air breathing fish may be a potential source of antibacterial agent towards the management of bacterial ailments among fish and human.

Keywords: Air breathing fish, Channa striatus, Heteropeustes fossilis, mucus, Antibacterial activity.

INTRODUCTION

Modern chemotherapeutic techniques have become highly reliable due to the advanced improvements and newer formulations (Ong yeong wei et al., 2013) Extracts and preparation made from the animal origin have been a great healing tool in folk and modern medicine (Kuppulakshmi et al., 2008).

Natural chemicals have been a boon for protecting and treating the various ailments of a diverse origin. Usage of natural chemicals is ancient practice is human civilizaiton. Exploration of natural compounds from different sources is a continuous task to improve and enrich their own lives (Agosta, 1996). Inspite of modern improvements in chemotherapeutic techniques, infectious diseases are still major issue of importance in public health issue (World resources' institute, 2000-2001).

Now-a-days the development of resistance by a pathogen to many of the commonly used antibiotics provides an impetus for further attempts to search for new antimicrobial agents which combat infections and overcome the problems of resistance with no side effects. Accelerated of action must be taken to reduce this problem controlling the use of antibiotics by carrying out
research to investigate drugs from natural sources and also drugs that can either inhibit the growth of pathogen or kill them with least/nil toxicity. Several human ailments are treated using animal borne drugs since the demand for animal based medicines is ascending every year significantly (Kuppulakshmi, 2008).

The global trade in animal based medicinal products accounts for billions of dollars per year (Kunin and Lawton, 1996). According to WHO, out of 252 traditional medicines, 8.7% come from animals (Marques, 1997).

Mucus layer is a biological interface between fish and their aqueous environment that consists of biochemical diverse secretions from epidermal and epithelial cells (Pickering, 1974, Ellis, 1999). Several roles for this sticky layer have been suggested. This layer acts as a lubricant (Rosen and Cornford, 1971) has and is mechanical protective function (Cameron and Endean, 1971) involved in osmoregulation and locomotion to playing a possible immunological role (Fletcher, 1978) controls the extra-specific chemical communication (Saglio and Blance, 1989). Over the past years, it has also been shown that mucus plays a pivotal role in the prevention of colonization by parasites, bacteria and fungi (Bragadeeswaran, 2011). Many researchers have screened the antibacterial effect of mucus against the marine microbial strains. It has been reported that epithelial tissues produce antimicrobial molecules which serve as the first line of a host’s defense against microbial invasion in a variety of vertebrates including humans (Ganz, 1999).

Antimicrobial drug resistance is a global issue due to its indiscriminate use of antimicrobials in the treatment of infectious diseases. Development of alternative therapy is the need of the hour. New approaches involving animal and plant borne medicines should be tailored to avoid complications. Animals are an excellent source of novel antimicrobial agents. Antibacterial activity in mucus has been demonstrated in several fish species. Many publications are available in explaining the antibacterial effect of saliva of fishes but there are no investigations regarding the marketed air breathing fishes. In the current investigation, an attempt was made to screen the antibacterial activity of the two marketed air breathing fishes C. striatus and H. fossilis.

MATERIALS AND METHODS

Marketed live fishes weighing about 500g and 300g of approximately 6 months and 4 months old C. striatus and H. Fossilis respectively were procured from Tenkasi Fish Market, Tirunelveli District, Tamil Nadu, India. The purchased fishes were climatized to laboratory conditions in bore well water and they were maintained for 7 days. After 7 days these fishes were used for mucus collection.

Collection of mucus from fish

Mucus was carefully scraped from the dorsal side of the body using a sterile spatula. Mucus was not collected from the ventral side to avoid intestinal and sperm contamination. The collected fish mucus was stored at 4°C for further use. 5ml of the mucus samples were collected aseptically from the fish and thoroughly mixed with equal quantity of sterilized physiological saline (0.85% NaCl) and the mixture was centrifuged at 5000 rpm for 15 minutes. The supernatant was collected and stored at 4°C for studying the antimicrobial activity.

In vitro antimicrobial evaluation

In vitro antimicrobial evaluation of fish mucus of C. striatus and H. fossilis were carried out against ten bacterial strains- B. subtilis, M. luteus, S. aureus, S. pyogenes (Gram positive) and E. coli, P. vulgaris, P. aeruginosa, S. typhimurium, V. chlorea (Gram negative) and M. smegmatis (Acid-fast bacteria). All the ten bacterial strains were freshly cultured (18-24 hours) from the mother culture preserved at the Post Graduate Department of Microbiology, Sri Paramakalyani College, Alwarkurichi.

Determination of antimicrobial assay

Antimicrobial activity was measured using the standard method of well diffusion on Muller Hinton agar plates. 0.1 ml of each bacterial culture was spread plated on Muller Hinton agar and incubated for 24 hrs at 37°C. The concentration of bacterial suspensions was adjusted to 10^8 colony forming units (cfu/ml) in Muller Hinton Agar. Wells holding the capacity of 30 ul were cut using a sterile cork borer. Sterile distilled water and antibiotics – Ciprofloxacin were used as negative and positive controls respectively.

RESULT AND DISCUSSION

The antibacterial activity of mucus from C. striatus and H. fossilis analysed are presented in Table 1. The mucus collected from both marketed fresh water fishes showed a strong inhibition in the growth for the tested bacteria. Inhibitory effect was noted for the tested mucus against all the test strains irrespective of their type. Maximum zone of inhibition was observed against Gram positive bacteria – S. aureus followed by S. pyogenes (Table 1).

On the contrary, least inhibition was observed against E. coli followed by P. aeruginosa. Mucus collected from both fishes presented a better antibacterial effect over
Gram positive bacteria when compared to Gram negative and Acid – fast bacilli (Figure 1).

The antibacterial effect of the tested mucus from the two fishes were found to be more or less same. The comparative antibacterial effect of the mucus of the two marketed air breathing fishes *C. striatus* and *H. fossilis* with standard Drug Ciprofloxacin are also shown in Figure 1.

Across the world, drugs without side effect and more effectiveness with reliability are searched from natural sources to avoid several complications. The ill effect of man made drugs and antibiotics affect the ecology considerably due their persistence and bioaccumulation (Kuppulakshmi, 2008). To surmount this, intensive research is on to find out a safe source. Animals have been used as medicinal resources for the treatment and
Table 1. Antibacterial effect of the mucus from *Channa straitus* and *Heteropneustes fossilis* (mm).

<table>
<thead>
<tr>
<th>Type</th>
<th>Microorganisms</th>
<th>C. straitus 30µl/well</th>
<th>H. fossilis 30µl/well</th>
<th>Ciprofloxacin 30µg/well</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gram Positive Bacteria</td>
<td>B. subtilis</td>
<td>10</td>
<td>9</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>M. luteus</td>
<td>10</td>
<td>8</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>S. aureus</td>
<td>12</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>S. pyogenes</td>
<td>12</td>
<td>9</td>
<td>14</td>
</tr>
<tr>
<td>Gram Negative Bacteria</td>
<td>E. coli</td>
<td>6</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>P. vulgaris</td>
<td>10</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>P. aeruginosa</td>
<td>7</td>
<td>6</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>S. typhimurium</td>
<td>8</td>
<td>7</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>V. cholera</td>
<td>8</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>Acid Fast Bacilli</td>
<td>M. smegmatis</td>
<td>9</td>
<td>10</td>
<td>13</td>
</tr>
</tbody>
</table>

All the values were the mean of three experiments. The values given are the diameter of zone of inhibition (mm).

Figure 1. A comparative antibacterial effect of the mucus with the standard drug – ciprofloxacin

relief of a myriad of illnesses and diseases in practically every human culture (Eraldo, costa-neto, 2005)

Fish mucus is enticing the scientific community due to its antibacterial effect. The accumulation of domestic wastes in the aquatic environs have led to the population of microbes being increased rapidly. In order to escape from such an environment, fishes produce secretes some substance against the invading microbes. Fishes are likely to rely on their innate immunity for their production against infectious diseases. The fish produces mucus substances which is a key component of innate immunity (Black stock and Pickering, 1982). Mucus secreted by fish play a major role in protection against major infectious agents such as bacteria and fungi.
However, under such conditions the fish maintains a health state by defending itself against these potential invaders by a complex system of innate defense mechanisms (Cancre, 1999, Choncha, 2004). The innate defense mechanisms of fish against infectious microbes include production of broad spectrum of antimicrobial substances, acute—phase proteins, non-classical complement activation, release of cytokine inflammation etc (Durand and Lagoïn 1988, Ellis1974). The antimicrobial property of crude epidermal mucus against infectious pathogens has been demonstrated in so many fishes (Fagan, 2003, Faid, 1997). In the current study the mucus collected from C. striatus and H. fossilis showed a strong inhibiting effect on the varied bacteria types. The results also revealed that the antibacterial effect of fish mucus was also a source of bioactive potential that could be exploited. The inhibitory effect of the fish secretion may be due to the presence of antibacterial compounds. Many researchers claim that the killing effect of fish mucus is due to the presence of pore forming compounds including glycoprotein (Ebran, 1999, Tirupathi, 2011). The results of the present work show the wide spectrum activity of mucus collected from the selected two fishes. Mucus contains several proteases (serine proteases, cysteine proteases, metalloproteases and trypsin like proteases) having strong antibacterial activity (Shai, 1995). Mucus represents an important biological interface between the animal and their aqueous environment. The mucus and epidermis are important in fish defense mechanisms because they are the first site of interaction between the host and potential pathogens. Within these layers are many enzymes and antimicrobial proteins, which are thought to be involved in innate immunity of the fish (Shephard, 1993). The strong substance present in the mucus may function either in the cytoplasm against intracellular pathogens or extracellularly through release to mucosal surfaces after infection-induced cell lysis or apoptosis. There are so many proteins present in the fish mucus which exerts strong resistance to invading pathogens. (Choncha and Shephard, 1993) demonstrated that the lipoprotein A-I and A-II inhibited the growth of Gram-negative and negative bacteria including fish pathogens at micromolar contractions. These findings support out results where in that the mucus collected from the fish C. striatus and H. fossilis showed strong microbial resistance. The present work supports the view that fish mucus could be source of antimicrobial agent for human and fish pathogens (Ong yeong wei et al., 2013). Further purification of the bioactive compounds are necessary in order to identify their chemical nature and to evaluate their potential as novel drug leads.

CONCLUSION

The present work has been an excellent evidence to prove the medicinal value of the mucus collected from selected air breathing fishes. Deep investigation will surely throw useful information for the discovery new drugs helping for sustainable aquaculture.

ACKNOWLEDGEMENTS

Authors would like to thank, The principal and faculty members of P.G Department of microbiology, Sri Paramakalyani college, Alwarkurichi, for providing the facilities to carry out the experiment.

REFERENCES

Pickering AD (1974). The distribution of mucus cells in the epidermis of the brown trout Salmo trutta (L) and the char Salvelinus alpinus (L) J Fish Biol. 6: 111-118.

