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In infinite rotating media the fundamental equations of the problems of generalized thermo-elasticity
with one relaxation time including heat sources have been written in the form of a vector-matrix
differential equation in the domain of Laplace Transformation for one-dimensional problem. These
equations have been solved by a different approach. Here we take two types of boundary conditions;
namely a) a step input of temperature and zero stress and b) a step input of stress and zero
temperature. The results have been compared to those available in the open literature. The

corresponding graphs have been drawn.
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INTRODUCTION

In the linear dynamical theory of classical thermo-
elasticity the governing equations for displacement and
temperature fields consist of the coupled partial
differential equation of motion and the Fourier's law of
heat conduction equation. For displacement field, the
equation is governed by a wave type hyperbolic equation,
whereas that for the temperature field, it is governed by a
diffusion type parabolic equation. From this we can
remark that the classical thermo-elasticity predicts a finite
speed for predominantly elastic disturbances but an
infinite speed for predominantly thermal disturbances,
which are coupled together. This means that a part of
every solution of the equations extends to infinity (Lord
and Shulman, 1967). Experimental investigations by
(Ackerman et al., 1966, Ackerman and Guyer, 1968 and
Ackerman and Overton), von Gutfeld and Nethercot
(1996); Taylor et al., (1969), Jackson and Walker (1971),
and many others, conducted on different solids, have
shown that heat pulses do not propagate with infinite
speeds. In order to overcome this paradox, efforts were
made to modify classical thermo-elasticity, on different
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grounds, for obtaining a wave type heat conduction
equation (Kaliski, 1965; Norwood and Warren, 1969;
Norwood and Warren, 1969 and Green and Lindsay,
1972). A comprehensive list on this generalization for the
last two decades is available in the works of (Green and
Lindsay, 1972 and Chandrasekharaiah, 1998).

At present there are three generalizations of the
classical theory of elasticity: the first proposed by (Lord
and Shulman, 1967) (L-S theory ) involves one relaxation
time for a thermo-elastic process, the second by
(Norwood and Warren) ( G-L theory), which takes into
account two parameters on relaxation times and the third
proposed by (Green and Naghdi 1995, Green and
Naghd, 1995 and Green and Naghdi, 1995). Owing to the
mathematical complexities encountered in coupled
thermo-elasticity, mainly due to inertia and coupling terms
in governing equations, these types of problems are
mostly confined to one-dimensional problems (Suhubi,
1975; Lebon, 1982; Chandrasekharaiah and Narasimha,
1993, Furukawa et al., 1990 and Anwar and Sherief,
1988)

However, in the present paper following one
parameter L-S theory, the authors have considered a
problem of heat sources distributed over a plane area in
infinite isotropic elastic solid. The alternate state space
approach of Hetnarski (1964) has been considered for
the analysis of the present problem.



Basic equations and formulations of the problem

An isotropic, homogeneous, thermally conducting elastic
medium with density A and Lame constants 4 and u
bounded by the planes x = 0 and x = L with a heat source
distributed over the plane area is considered.

The equations of motion in the absence of body forces
are

T =pPui  (2.1)

where
T, = AN, + 2, — BT +14,T)5; (2.2)
A=u; (23

B=0CA+2u)a (2.4

The heat conduction equation is

q,; =—pc, (T+ Iy T) _IBTO A (2.5)
Where
q; =—KT,

1
)

(2.6)

all the terms have the same significance as in (Lord and

Shulman 1967)
Combining (2.5) and (2.6) and adding the source term,
we obtain

KT, = pc,(T+1,T)+ BT, A-(1+1, %)Q (2.7)

Combining (2.1), (2.5) and (2.6)
displacement equation of motion as

pii= A+ WV (Vii)+ Vi - V(T +1,T);  (2.8)
where
k is the thermal conductivity,
¢, is the specific heat,
« is the coefficient of thermal expansion,
t, and t, are the thermal relaxation times ¢, 27,20 ,

6;,=1, t,=0 for the L-S theory and J, =0, # >0

for the G-L theory.

Since we are dealing with an isotropic medium, without
any loss of generality, we may consider the waves
propagating in the x-direction. All field variables are
supposed to be functions of x and t only.

From (2.7) and (2.8) we get

Fu ar JT

o &f P Pt o) 29)

we obtain the

(A+20)—
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T JT

T _ 2. (2.10)
pYE pce((?t ()az ) (1+t0 )Q

)+ﬂT;) lk ()

We take the initial conditions as

u=0,T=0,9u_, Ir_,att=0,x=0 (2.11)
ot ot

We now define the quantities as in (Sharma 1997)

X kt T oviu s = kt,

:_s T:_s Z:_s U: ] - 5
=1 r T, prL’ I
kt A+2 2
R W S Tk TR P
L pe, p pcy

By using equation (2.12), equations (2.9) and (2.10) can
be written as

U U _dZ _ 9Z

=—+

o’ Lo on anar

(2.13)

o9z JZ azz

aﬂz (o-,z, %afz 779 +0,7, 05 779 ) I+ — )Q(2-14)
2

where b:sz2

The initial conditions (2.11) become

U(77,0)=0,Z(77,O)=O,8—U:0,a—2:0 (2.15)

ot 0T

and the inequality for relaxation times become
(2.16)

T27,
Now, if we consider the problem of a semi-infinite
medium, then L — oo .

..b—0 and equations (2.13) and (2.14) take the
following form

’U U 2JZ 2°Z

_—bh)—=—4 77—
on* ot dn 'omor
(2.17)

’Z JZ _9Z U ’U

o i) TG TG o

2L -+, 2o (218)
or

If O — 0, the equations (2.17) and (2.18) are exactly the

same as deduced in [28].We assume that the heat

source acts on the plane x=0 and is of the form

Q=0,06(MH (7),
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where Q, is a constant, 0(17) and H(7) are the Dirac
delta function of 77 and the Heaviside unit step function
of 7 respectively.

We now apply the Laplace transform of parameter p
defined as

U@, p)= J’ U@, t)e " dr
0

Za,p)= 2@, v)e " de
0
(2.19)

Taking the Laplace transform on both sides of equations
(2.17), (2.18), we obtain

d> dZ
=+ Tlp)_
dn
(2.20)
d:—%zp(1+rnp)2+gp(1+5lkrnp) —(1+Top) Qf)5('7) (2.21)

an

For L-S theory, equations (2.20) and (2.21) take the
following form:

T _az
an> dn
(2.22)

d?

(2.23)

P(1+T()p)[Z+g U Q()é‘(n)]
an P’

n

For G-L theory, equations (2.20) and (2.21) take the
following form

d’

= (1+Tlp)—Z (2.24)
dn

n

2

o
N I

(2.25)

= p(l+2’0p)[Z+8

2

U Qo5(77)]
an

where

g=1+7,p)"
Now we define

d—Z = Zl and == dU _'
dn d77
So, the equations (2.20) and (2.21) reduce to

(2.26)

Z oy -’ .
az _ pT,Z + pet,U _%Q0UD

dn p

(2.28)

where

7, =(+17,p), 7, =(1+6,7,p), 7, =+1,p)

(2.29)

In particular for L-S theory 7, =(1+7,p) as 0, =1

and for G-L theory 7, =1 as J,, =0.

Using equations (2.26), (2.27) and (2.28) we get

z 0
100 1 0”? *
N7 2l pr 0 per | Z |+] 0D | (230)
d77 ., 00 * 00 _, p
U Tl U 0
This can be written as
dC  —
— =AC+B (2.31)
dn
where
0 1 0 0 ~
A=|ph, O pery | p | %QdmANd_ | (2.32)
0z O p B
0

Equation (2.31) can be integrated by means of the matrix
exponential to yield

C(,p)=e"[C(0, p)+B,] (2.33)
where
B = j e " Bdn
The characteristic equation is
-m 1 0
pt, —-m peT,|=0 (2.34)
0 7 -m
Solving equation (2.34), we obtain
m, =0,m, and m, = %\/ap =+m ,say (2.35)

where



a=1,+éer,7,
Now by Cayley-Hamilton theorem, we get
A= paA=0 (2.37)

This equation implies that A can be expressed in terms of
A%, A and |, the unit vector of order three.

e =8, +S,A+S,A’ =D, p) (say)

(2.36)

(2.38)

The scalar coefficients S, S, and §, of equation (2.38),

are S,=1,
1
S, =—lexp(mmn) —exp(-mn)],
2m

1
S, = ﬁ[exp(mﬂ) +exp(—mn) —2] (2.39)

Therefore, equation (2.33) reduces to

C, p)=D@, p)ICO, p)+B]
(2.40)
Where

/
PET,S,
/
PET,S,
1+ per)z, S,

1+pT;S2 S,

pT,S, 1+ paS, (2.41)

D, p) =
pT;Tl*SZ Tl*Sl

and

B = [exp-AnT0,607) =~

Therefore, equation (2.40) reduces to

79,
p

Z(. p) Z©.p) | (0

J— J— T*

Z @) |=Da.p| Z O.p) |+ —°7Q°

U (1, p) U©p) (0
(2.42)
Now we take two types of boundary conditions such as
Thermal shock: T'(0,¢) =T H(t), ©(0,1)=0
Normal load:
7(0,t)=0,0(0,1)=0,H(t) (2.43)

By (2.12), (2.43) reduces to

Z0,7)=T,H(r), o (0,7)=0 and
Z0,7)=0, o (0,7)=0,H(7) (2.44)
By Laplace transform, equations (2.44) become

ur,

— T —_
for thermal shock : Z(0, p)=-2, U (0,p)=
P

*

for normal load : Z(O,p) =0, U (0, p) % (2.45)
p

Now from (2.42), we get
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Znp=(+pES)ZQpH+SIZ O p—22 ]+ps#§zU(ap) (2.46)

Zap)= pToSZ(Qp)+(1+m92)[Z(QP UQp (247)

U(np)=pﬁﬁ532(0p>+ﬁ§[Z<ap>if1+a+wéﬁ&w<0p> (2.48)
By (2.45) and (2.47), we get
for thermal shock :
7(0,p)=—T0\/E—T°—Q° (2.49)
p p
for normal load :
Jap p
Therefore, for thermal shock
Z, p)=—exp( mip) +—2 (%) L exp(—mi7) (2.51)
p ap’
Z (1. p)=- \/; exp(—mip) — ‘)Q) ——exp(—mm)) (2.52)
T 1 ()Q)
UG, p)=- CXP( i) —————exp(—nij) (2.53)
ap P
T 0.0)=" 0 expom + 5D e (2.54)
P Ja'
and for normal load
z(ﬂ,p)=—%[l—e><p(—rm7)]+ 0, exp(—m)) (2.55)
ap Ja'
— / *
Z (7. p) = ~Z9%0 exp(-mip) — 222 exp(—mip) (2.56)
ap 14

U, p) =25 etz explompl— L expinmy - (2.57)
apap ap

D expl— nm)+ra TTOQ)
@ o

Now for conventional coupled theory of thermo-elasticity,

7,=7,=0.

nTy=1,7 =1, 7)=1. ~a=1+€, m=/(1+&)p

Therefore, for thermal shock

Anp=Leg[ I
2np) pf?@( (+9mm®@( (+op)  (2.51a)

U(n, p)=— €410, exp(—m) (2.58)
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Z(n p=-T, ’— exp(—( 1+8p17)—exp( J(+epn)  (2.52a)

(2.53a)

Unp= ,—e@( S 2 ext-fom

(Hop

— T Q)
U (1, p)="exp—/(1+e)pr)+—2_exp(~[(+e)pn)  (2.54)

and for normal load

20— _[1-expTrep 9 _ (2.55a)
Z(n,p)= 1 1 1

@7.p) (1+€)p[ exp( (+€)m)]+mem( N+e)pi)
Zap)=- J(ff—;mexp(—\/awm)—%em-1/<1+—g)pm (2.56a)
wm— b (Heyr-eegt| () MHM (oM (2.57a)

n/@
U(Up)— 61(—\/7 ep \/—ﬁe@(—\/i ) (2.58a)

Inverting the Laplace transform of equations (2.51a) to
(2.58a), we get for thermal shock

P W{J?@? lzfr q{ (1+-s)ﬁ} J—W{J?m] (2.59)

2= [t+e) Xp[ (1+g)7f] 0 'f[ 1+gn]
o Jz

(2.60)

__h [2r_ [ a+e Jaren
U(U’T)__\/E{ [ 7 H 1/(1+£77;f[ e ]
| 1, nfirer <1+e>riU?e>n J?e)n 260)
ol ym  2lx 4 )
(o, Q zfr a%ﬁ} J@en)
Urny=Ff*—— W o %)[ ﬁm[ (2.62)

and for normal Ioad

«/(1+8 mn
Z =— -1

9 |2t [ rer) o [0 (263
si z Xl{ 4 J (HS)M( o H

a+
(+en (+&m
| QM[ e j

2.64
J(l +€) 4 @59

Zmo=

O'A

um.o)= \/—{ (+em -
{ AL nlor (1+e>ri 1+em @0]265

SN

(8|7

B d+é)n
U(f],T)—(l_l_g)l:l 8erfc{ 7 H

. (IQO )H?e p[ (1+8)77 j—J(lTen f[\/msnﬂ (2.66)
AL+E

In the L-S theory, as p — oo, we obtain from equations
(2.51) to (2.58) for thermal shock

2 =B | T T /) (2.51b)
i =Ses| 42 ot A Dol 2ot

it
HAREIS L

i

and for normal load

an)=%{1ﬂ{i%”}gm}%ie{i%”}d_&m (2.55b)
ZW_%T%}{W%}{—%}@M (2.560)

LY W
ToP

X AP 2z,




(2.57b)

O

U’pzfqﬂi{%ﬂ w@q{%%%

Taking Inverse Laplace transform of equations (2.51b) t
(2.58b), we get for thermal shock
2.7 =TH (- ﬂon)exp[ ﬂ‘;”}

0

% H(t—Am)exp

N

0

Z'(n,0)= —02{5(7 2077)+—H(1 Znn)}exp[

O

:

O

-0, [T()5(T - /1077) +H(r— /1077)] €xXp { j (2.68)

U(m)=—ﬂ<r—ﬂm) & 420’7) }H(r ﬂgn)exp( j
ﬂonj

()Q()
pE (= AmH(t~ ﬂoﬂ)eXP( 2

U(nﬂ#ﬁ(r—%ma@[%}iffl(r—m@@[%g (2.70)

and for normal load

an)=%{1—f(r—m@@(ﬁ7}%f( m@q{ J @71)

£0,T, An
/10 {5( /1077)+2—0H(f %n)}exp[ ]

0

ﬂonj 272

0

(2.69)

Z'(n.7t)=
-0, [Toé‘(f A+ H (T~ /1077)] exXp (

o, £ (=)’
1+ ){ ro{ ~ A= 4z,

Un.7)= }H(r %ﬂ)eXP(

w)

(IQ S (F= A (2~ ﬂomexp{ ﬂ“”} (2.73)
= (2.74)
Unv= - 6){ F /Weq{
where

Ay =+JT,(1+ &)

In the case of G-L theory, we obtain from (2.51) to (2.58)
for thermal shock

i) =Peg] Mol 4 %Q@{i‘n
Znp) pe\o[ 2%}:@( ﬁj+z—p %

(2.51¢)
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b

— T, |2a,7 2a,-1, _An

SRS RN Z%jem m
_ong { L [1 +l_lﬂem[_ﬂ7jem(_f pr) (2:530)
(/7,*) P P L 4 24,

g 1 A :
U@ p)=1, [TI +;j exp {_Tnj 282 (_ﬂ’ pﬂ)

a()

Org|, 1f1, 1 1 An) . o 54
St o e

and for normal load

1] X .
Z(77 p)= (io-) {—2— dop3 | {l—exp(—z—a’:Jexp(—ﬂ Pﬂ)}
9 I /fﬂj
14 exp expl-Apn)  (2.55¢)
ip{ op %p} [ (=) °

- ot i e
NIV
it e

e

A .
N {H I [ 1 +1_1Hexp[_2:]exp(_ﬂ o) (2.58¢)

p\t, 7, 2a, o

Taking inverse Laplace transform of equations (2.51¢) to
(2.58c), we get for thermal shock

in
Zn.0=THT—A7n) ( J 4D g )exp( j (2.75)
n, n)exp ) 1 n %

Z'(n,0)=-TA {5(1’— An) +LH(T—,1*77)}XP [_Mj
2a 2a

0 0

_Qo[%5(7—,1*77)+H(r—ﬂ*n)]exp[—ﬂj (2.76)
2a

0

um,7) =_L€:0/1* {2%71 +(2a0 —7,'1) (t— ,1*,7)} H(r- ,1*77) CXP(_LZZH
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50 (T—/W( ﬂ In}
Ly +-— | [He—Anep 21| (2.77)
(2) {T L L) 7 2,

U'(n.7)=T,[ 7,6(c—= A+ H(z—A'n) |exp (_gj

a()

+7T”T‘*Q” {6(1— An)+ [1 N 1] H(r- /1*77)} exp[—;{*n] (2.78)
A T, 2a,

1 0 a() 0

and for normal load

Za,7) =220 H(r rm-= A1)’ }H(z’ ﬂq)exp(—”]—ﬂq
(4) 2a

2a, o 2a,

%O il L L = amen| - 21| (@79
— {1 (t /177)[% Z%HH(T ﬂn)exp[ 2%] (2.79)
—QO[H(T Am+d(rt— /177) exp[ j (2.80)

ua, r)=i{/1*n{fo o f}—eq {(r—/l*nﬂ(r_ln) (24 —351)}
(7) % a7

X H(T—A'n)exp {—g}

(z=An)
2a,

Z'(n,7)=— g;;; {1— }H(r 2 n)exp(

a()

i [1+[— i——](r /177)}

(/1*) T 4
X H(T—/i*ﬂ)exp[—/;—azj (2.81)

U'(n.7)= 0':) 2 |:{To + 5 & T}+€TI {H’ (=21 (ay-1, )}
(ﬂ ) a a,t,

H(t—-A"n)exp (—gj

Q)z'z' [ 1 j } [ l*nj
K-+ —+—— |Hz-An) (2.82)
{ -An N =A1) lexp N

where

1 0
Ty TET,
" l+e
Now, if we write J, =0 , all the displacements and the

temperature for both thermal shock and normal load are
same as in (Sharma 1997).

and A" =,/a,(1+¢€)

Again, it is found that there are discontinuities at
T=/?077 in the case of L-S theory, except the
displacement for thermal shock. It is also found that at
T=A'7, there are discontinuities in the case of G-L

theory.
The jumps are the followings:

In the case of L-S theory, for thermal shock, we get
from equation (2.67)

_ Q% _ T
[ZL=,2077 = [To +T] exp[ 2—%]
from equation (2.68)
/ __| TA T
[Z L: - [ +Q0]exp[ 21_0]

from equation (2.70)

[U’]T_ = (T + Q;g“ jexp( 2:_0}

and for normal load. We get from equation (2.71)

__2o; [ €0 _Quy _T
[ZJHM_ 1+g+[1+€ P ]exp[ 270]

from equation (2.72)

from equation (2.73)
u —_ %% ayp| -
Y =Tro0n exP{ 27,
from equation (2.74)

, __ 0, o, Q7 _ T
[u}7=ﬂof7—(1+8)+[(1+8)+ A jeXp[ 2roj

In the case of G-L theory, for thermal shock, we get from
equation (2.75)

Ao o,

o)

from equation (2.76)

_|TA
[Z:'r: ' { 2”0

from equation (2.77)
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Figure 1. Temperature vs Time for thermal shock (L.S Theory)
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Figure 1a. Temperature vs Time for thermal shock (L.S

Theory),considering the source term Qo =

Figure 2. Temperature Gradient vs Time for
thermal shock (L.S Theory)

from equation (2.78) =21 ( ,1*)2 24, A 2ﬂ0
Qo 1 1 1 . from equation (2.80)
4 Wh - _*v
A T g
%

and for normal load, we get from equation (2.79) from equation (2.8
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.2 0.

Figure 2a. Temperature Gradient vs Time for thermal shock
(L.S Theory) considering the source term Qo = 0

G

-0.8

-1

Figure 3. Displacement Gradient vs Time for thermal shock

(L.S Theory)

e

Figure 3a. Displacement Gradient vs Time for thermal shock
(L.S Theory) considering the source term Qo = 0

o,

()

|:u:|T:/'L*77 =" (TO + aoa_ofo TJ_

B

from equation (2.82)

&

a

(/1«)2 %

2

1 1 1

rj+ ‘C“T%O-L—Q)TOT1
2y 4

Qofofl ex

i

NUMERICAL RESULTS AND DISCUSSIONS

Here we prefer to determine the state in the state-space
domain numerically, for a fixed value of a space variable
and for varying time.

Taking values of the constants 7, £, /70 as
T, =0.02sec, £ =0.0168, A, = 0.1426,

we can find
and A" =,la,(1+¢€)

Tj
2% Ty TET,

" l+e¢
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Figure 4a. Temperature vs Time for normal load (L.S Theory)
considering the source term Qp = 0
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Figure 5. Temperature Gradient vs Time for normal load (L.S Theory)

Figure 5a. Temperature Gradient vs Time for normal load (L.S Theory)

considering the source term Qo = 0
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Figure 6. Displacement vs Time for normal load (L.S Theory)
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Figure 7. Displacement Gradient vs Time for normal load (L.S Theory)
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Figure 7a. Displacement Gradient vs Time for normal load (L.S Theory)
considering the source term Qp =0
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Figure 8. Temperature vs Time for thermal shock (G.L Theory)



Figure 8a. Temperature vs Time for thermal shock (G.L Theory)
considering the source term Qg = 0

-3.5
Figure 9. Temperature Gradient vs Time for thermal shock (G.L Theory)
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Figure 9a. Temperature Gradient vs Time for thermal shock (G.L Theory)
considering the source term Qg = 0
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Figure 10. Displacement vs Time for thermal shock (G.L Theory)
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Figure 11. Displacement Gradient vs Time for thermal shock (G.L Theory)
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Figure 11a. Displacement Gradient vs Time for thermal shock (G.L
Theory) considering the source term Qo = 0
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Figure 12. Temperature vs Time for normal load (G.L Theory)
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Figure 12a. Temperature vs Time for normal load (G.L Theory)
considering the source term Qo = 0
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Figure 13a. Temperature Gradient vs Time for normal load (G.L Theory)
considering the source term Qg = 0
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Figure 14a. Displacement vs Time for normal load (G.L Theory)
considering the source term Qg =0
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Figure 15a. Displacement Gradient vs Time for normal load (G.L Theory)

considering the source term Qg = 0

The above values are used and the graphs are plotted.

In case of L-S theory, it is seen from the graphs that
characteristics of the parameters under consideration are
nonlinear in nature and are different from those of G-L
theory. From Figure 1, we see that temperature
decreases as time increases in case of thermal shock.
Temperature gradient and displacement gradient
increase from negative value as time increases and
ultimately tends to zero in case of thermal shock as is
found in Figure 2 and 3.

In case of normal load, temperature increases from
negative value but remains negative and steady after
some time, as is seen from Figure 4. From Figure 5, it is
seen that if there be no source term, the result is same as
is found in (Hetnarski, 1964), but nature of the graph
remains the same.
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