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Geophysical well logging data often show a complex pattern due to multifractal condition. Using 
Multifractal Detrended Fluctuation Analysis on the original, shuffled and surrogated series is a 
procedure in finding the source of multifractality. Fractal analysis on bulk density, sonic transmit time, 
acoustic impedance and neutron porosity of two wells from two Iranian oil fields were done. Results 
respectively showed similar scaling behavior of the long-term correlation and the broad probability 
distribution in result of the depositional environment and the strong heterogeneity over the time scale 
and confirmed that different layers cannot be introduced with the same power law exponent. 
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INTRODUCTION 
 
Self-affine fractals are characteristics which described 
many natural events like biology, physics, geology and 
geophysics (De Santis et al., 1997; Dimri, 2000; Fedi, 
2003; Bansal and Dimri, 2005a; Moktadir et al., 2008). 
Self-similar fractals show a pattern that is similar to itself 
in any scale, and they are the general form of fractal 
Brownian motions (fBm) and fractal Guassian noises 
(fGn) (Turcotte, 1997; Malamud and Turcotte, 1999). The 
fBm are defined by Hurst coefficient (H) and show the 
scaling nature of the motions with the value between 0 
and 1. Various methods like the Power Spectrum (PS), 
Roughness Length (RL), Semi-Variogram (SV), Wavelet 
Transform (WT), Spectral Density (SD) and Rescaled 
range (R/S) can estimate Hurst coefficient. 

A signal called homogeneous fractal or monofractal, 
when fBm are singular with the same Holder exponent. 
Multifractality is introduced by Mandelbrot (1974) to show 
turbulence phenomena. Later Multifractality Concept has 
been applied in very different contexts (Mandelbrot, 
1989). Multifractal signal models are positive distributions 
with self-similarity but they have non-homoge-                    
neous scaling. Multifractal scaling supplies a quantitative  
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description of a broad range of heterogeneous events 
that can be distinguished between different regions, 
which have different fractal properties (Stanley and 
Meakin, 1988). 

Well logging data represent stochastic spatial series 
caused by sedimentation and other processes after that. 
So, the analysis of well logging data is a complex task 
and the physical property of the earth is the reason of 
multifractality in well logging data. In a multifractal 
system, any piece of the system is established by a 
distinct exponent. So, for the characterization of a 
system, a large number of such exponents are needed. 
The crust is formed from many layers with different 
characteristics and heterogeneities due to sedimentation, 
compaction, cementation, stratification, tectonic activity 
and so forth. So, one can expect different layers 
represent different environments with different distinct 
exponents. Hewett (1986) supplies the first distinct 
evidence that the porosity logs are perpendicular to the 
bedding may follow the statistics of fGn, while those 
parallel with the bedding follow fBm. The fBm and fGn 
analysis of the porosity log was considered by Hardy and 
Beier (1999), and recently by Sahimi (2011). One 
important outcome of the well logging data following the 
statistics of fBm or fGn is the existence of the long-term 
correlations. More recent research shows that densities, 
seismic velocities and elastic module  of  rocks  may  also 
follow  self-affine  distributions,  like  the  fBm  and   fGn 
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Figure 1. Geological time scale and neutron porosity well log of Farour-A1. 

 
 

 
 

Fig. 2. Geological time scale and neutron porosity well log of Farour-B2. 

 
 
 
(Sahimi and Tajer, 2005). 
 
 
Farour-A and Farour-B Offshore Oil Filed 
 
Well logging data used in this study, are from Farour-A 
and Farour-B offshore oil field located in Persian Gulf in 

southern part of Iran. Depth resolution or sampling 
intervals of data are 20 centimeters. The geological 
column and neutron porosity log for the Farour-A1 and 
Farour-B2 wells are respectively shown in Fig.1 and                
Fig. 2. Well logging data examined in this research are 
four well logging series including bulk density (RHOB), 
sonic  transmit  time  logs  (DT), acoustic  impedance (AI)  
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and neutron porosity (NPHI). The bulk density represents 
the overall density of a rock, including its solid matrix and 
fluid content. The sonic transmit time log measures 
acoustic velocity of rock, and it is related to the porosity 
and the fluid content of the pores. Acoustic impedance is 
the product of density and velocity value of the rock, and it 
has an inverse relationship to porosity. Neutron porosity 
measurements use a neutron source and account fluid 
content (hydrogen index) in the porous media and 
determine the porosity.  
 
 
METHODOLOGY 
 
The research focuses on multifractality nature of well 
logging data. Thus, by analyzing the multifractality in the 
original, shuffled and surrogated well logging data, type of 
multifractality nature in the well logging data are 
distinguished. 
 
 
Monofractal and multifractal time series 
 
Multifractal analysis is currently considered as a useful 
and major tool for understanding the structure in a set of 
data (Karacan, 2009). The analysis consists of measuring 
the scaling exponents of the data. The exponents may be 
used for detection, classification and interpretation of the 
data. The scaling property for all scales a > 0 is: 

( ) ( )HB at a B t≡      (1) 

where ≡  is an equality of finite dimensional distribution. A 
covariance analysis shows that the fBm are a 
nonstationary process, and its increment is stationary so it 
can define a generalized power spectrum with a power 

law decay by an exponent 2 1Hβ = + and 

1 3β< < (Turcotte, 1992). Thus, any individual 

realization of the process is a fractal curve with a fractal 

dimension D calculated by: 2D H= − . fBm realization 

is everywhere singular, i.e., t R∀ ∈ and for 0 1a < , the 

following relationship is proven: 

 ( ) ( )H HB t B t t K t
α

− − ∆ ≤ ∆   (2) 

where K is a positive constant. 

The Lipschitz regularity of a time series at point 0t is the 

domain in which above equation is verified. If it is 1a <  at 

point 0t , the signal is not differentiable and will 

characterize the singularity type. The Holder exponent of 
fBm is equal to the Hurst parameter where the following 
relationship is satisfying (MALLAT, 1998). 

 ( ) ( )
H

H HB t B t t t− − ∆ ∝ ∆     (3) 

Multifractality can be studied with two ways of the local 
and the global nature. The local nature is a local 
estimation of Lipschitz regularity, and the global nature 
consists  of  defining  a  method  to  estimate  the  global  

 
 
 
 
repartition of the various Holder exponents. Global 
multiscale analysis will help to show the data is 
monofractal or multifractal. 

Holder exponent 0.5H >  represent positive 

correlation and persistent time series and 0.5H <  

represent negative correlations and anti-persistence time 

series, while 0.5H =  implies that successive increments 

of the data are random and follow a Brownian motion.  
Typically, broad probability density functions of the 

data with a fat tail and long-term correlations are the two 
factors that cause multifractality in stochastic series 
(Movahed et al., 2006, Jafari et al., 2007, Zunino et al., 
2009). By investigating the multifractality in original, 
shuffle and surrogate time series, type of multifractality is 
distinguished. It is possible to find the nature of 
multifractality caused by: (I) Non-Gaussian PDFs of the 
data and their long tails, or (II) Different long-term 
correlations of the small and large fluctuations, or (III) 
Both. In case (I) multifractality cannot be destroyed by 
shuffling the series. Moreover, h(q) of the surrogate series 
will be independent of q. In case (II) multifractality is 
removed by shuffling because it destroys all the 
correlations. Therefore, if multifractality is only due to the 
long-term correlations, in the shuffled series, 

( 2) 0.5h q = = , i.e. the shuffled series is monofractal. If 

multifractality is the results of both factors, then both the 
shuffled and surrogate series will show weaker 
multifractality than the original series. 
 
 
Shuffle and surrogate data 
 
Two procedures are needed for analyzing the nature of 
the multifractality in time series, shuffling and surrogating.  
Shuffling randomizes the order of the time series value, all 
the spatial correlations are destroyed but the probability 
density function (PDF) of it will not be affected by the 
shuffling. 
Using surrogate data in the nonlinear time series analysis 
was introduced by Theiler et al. (1992). Surrogate series 
are generated from the original time series for determining 
the effect of the broadness of PDF (non-Gaussian PDF). 
The measured topological properties of the original time 
series are then compared with the measured topological 
properties of the surrogate time series. If both original time 
series and the surrogate time series yield the same values 
for the topological properties, the null hypothesis that the 
data set is random noise, cannot be ruled out. A distinct 
algorithm for generating this, is as follows (Mazaraki, 
1997): 
1. Input the experimental time series data     

( ), 1,...,
j

x t j N= into a complex array. 

 ( ) ( ) ( ),    1,...,z n x n iy n n N= + =   (4) 

 where ( ) ( )
n

x n x t= and ( ) 0y n = . 

2. Construct the discrete Fourier transform. 
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3. Construct a set of random phases. 
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4. Apply the randomized phases to the Fourier 
transformed data. 
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5. Construct the inverse Fourier transform of ( )Z m ′ . 
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Multifractal Detrended Fluctuation Analysis (MF-DFA) 
 
MF-DFA was proposed by Castro e Silva and Moreira 
(1997). After that, It was modified by Kantelhardt et al. 
(2002) and represents a generalization of the DFA 
approach that has been used for the analysis of various 
types of stochastic series in science and engineering, 
such as climate change, and finance and economic 
activities, heart rate dynamics, DNA sequences, human 
gait and neuron spiking and seismic data (Telesca et al., 
2004, Shadkhoo and Jafari, 2009, Manshour et al., 2009; 
2010) and so forth. The multifractal DFA (MF-DFA) 
procedure consists of five steps (Kantelhardt et al., 2002). 
Three first steps are essentially identical to the 

conventional DFA procedure. Let us assume that ( ix% ) is 

a series of length N, the steps are as follows: 

Step1: determining the profile ( )Y j  by integrating the 

time series.  

1

( ) [ ( ) ]    1,...,
i k

i

y k x i x k N
=

=

= − =∑ %        (9) 

where x% represents the average value. 

Step 2: dividing the profile ( )Y j  into int( )sN N s=  

non-overlapping segments of equal length s. for 
contributing all the data when N is not a multiple of s, the 
same procedure is repeated starting from the opposite 

end. So, 2 sN segments are obtained. 

Step 3: Calculating the local trend for any 2 sN segments 

by m degree least square fit of the profile and then 
determining the variance for each segment. 
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Step 4: average over all segments to obtain the qth order 
fluctuation function. 
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∑   (13) 

Step 5: Determine the scaling behavior of the fluctuation 

function by analyzing log-log plot of ( )qF s  versus s for 

each value of q. 

For very large scales, 4s N> , ( )qF s becomes 

statistically unreliable because the number of segments 

sN for the averaging procedure in step 4 becomes very 

small So, scales 4s N> should be excluded from the 

fitting procedure for determining ( )h q . Also, systematic 

deviations from the scaling behavior occur for very small 

scales, 20 30s −�  and so we ignore small scales too. 

The Hurst exponent H is given by, ( 2)H h q= = , where 

( )h q  is the generalized Hurst exponent obtained from 

step 5. If ( )h q varies with q, the series shows 

multifractality, whereas a constant ( )h q is a characteristic 

of monofractal system. 

For the positive value of q, ( )h q  describes the scaling 

behavior of the segment with large fluctuations and for the 

negative values of q, ( )h q  describes the scaling behavior 

of the segments with small fluctuations. Usually the large 
fluctuations are characterized by a smaller scaling 

exponent ( )h q  for multifractal series than the small 

fluctuations. For stationary time series, the exponent 

(2)h  is identical to the Hurst exponent. 

 
 
RESULTS AND DISCUSSION 
 
MF-DFA that was performed on well logs from the well 
Farour-A1 belongs to Farour-A offshore oilfield and the 
well Farour-B2 belongs to Farour-B offshore oilfield. 

Hurst exponents ( 2)=h q  of Farour-A1 and Farour-

B2 well logs are shown on Fig. 3 and Fig. 4. Hurst 
exponents for all well logs from these two wells are 
greater than 0.5 and represent positive correlation and 
persistent time series. These results disaccord to Ferreira 
et al  (2009)  on  Namorado  sandstone  field (an offshore  



152  Int. Res. J. Geol. Min. 
 
 
 

 
 

Fig. 3. Generalized Hurst exponent for neutron porosity, acoustic impedance, bulk density and sonic 
transmit time logs in Farour-A1. 

 
 

 
Fig. 4. Generalized Hurst exponent for neutron porosity, acoustic impedance, bulk density and sonic transmit 
time logs in Farour-B2. 



 
 
 
 
Brazilian oil field) with negative correlation. This behavior 
is due to the different depositional environment. While 
Namorado sandstone field is formed by the coalescence 
of channels and lobes deposits on the irregular 
depositional surface with elongate, dome shape, partially 
faulted structure duo to salt flow activity in the late 
Cretaceous era (Bacoccoli, 1980) and Farour fields is 
formed by interbedded carbonates, sandstone and shale 
with a poor matrix porosity and permeability. In spite of 
poor primary reservoir maturity, these reservoirs have the 
extensive production rate due to tectonic activity (Hull, 
1970, Bacoccoli, 1980). 

Generalized Hurst exponent h(q) for Farour-A1 and 
Farour-B2 well logs in original, shuffled and surrogated 
forms are respectively shown in Fig. 3 and Fig. 4. 
Generalized Hurst exponents of the surrogated series 
have no monofractal behavior and are not independent on 
q. So, multifractality nature of the series is not just due to 
Non-Gaussian PDFs of the data and their long tails (type 
I). Generalized Hurst exponents of the shuffled series 
have no monofractal behavior and are not independent on 
q. So, the correlation is not destroyed and multifractality 
nature of the series is not just due to the different long-
term correlations of the small and large fluctuations (type 
II). Generalized Hurst exponents of the shuffled and 
surrogated series have weaker multifractality than the 
original series. So, multifractality is caused by both factors 
of Non-Gaussian PDFs and different long-term 
correlations of the small and large fluctuations (type III). 
This behavior is related to physical properties of the earth 
in which, depositional environment over the time scale 
increases the long-term correlation and strong 
heterogeneity causes broad probability distribution. So, 
different layers have different power law exponent. 
 
 
CONCLUSION 
 
Multifractal Detrended Fluctuation Analysis (MF-DFA) is a 
good procedure to study multifractality nature of the well 
logging data by considering original, shuffled and 
surrogated series. MF-DFA examined on four types of 
well logging data belong to two different wells with 
different geological time scale. These analyses showed 
that Hurst exponents were greater than 0.5 and exhibited 
persistence in the long-term correlation of these data. And 
also, multifractality nature of them was due to the long-
term correlation and broad probability distribution due to 
physical properties of the ground in which, depositional 
environment over the time scale rises in long-term 
correlation and strong heterogeneity gives broad 
probability distribution. 
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